HOMEWORK #4, DUE WEDNESDAY FEBRUARY 25TH

1. Prove that on any region U the family of holomorphic functions \mathfrak{F} with positive real part is normal. Under what added condition is it locally bounded? (*Hint: Consider the functions* e^{-f} .)

2. Show that the functions z^n , n a non-negative integer, form a normal family in |z| < 1, also in |z| > 1, but not in any region that contains a point of the unit circle.

3. If f(z) is entire, show that the family

$$\mathfrak{F} = \{ f(kz) \, | \, k \in \mathbb{C} \},\$$

form a normal family in the annulus $r_1 < |z| < r_2$ if and only if f is a polynomial.

4. If the family \mathfrak{F} of holomorphic functions is not normal on U then there is a point z_0 of U such that \mathfrak{F} is not normal in a neighbourhood of z_0 . (*Hint: A compactness argument.*)

5. If U is a simply connected region which is invariant under complex conjugation and z_0 is real prove that the map $f: U \longrightarrow \Delta$ given by the Riemann mapping theorem satisfies $f(\bar{z}) = \bar{f}(z)$.