1. GENERAL FORM OF CAUCHYS FORMULA

Definition 1.1. Let U be a region. A chain is a formal sum of paths
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where vy1,%Y2, . .., Y& are paths in U.
A chain vy is is a cycle if it is a sum of closed paths.

Note that since the integral is linear we can integrate over chains:

/Vf(z)dz:/%f(z)der/wf(z)derer/%f(z)dz.

Similarly we can define the winding number of a cycle around any point
in the complement of the cycle:

n(y;a) =n(y;a) + n(ye;a) + -+ - 4+ n(y; a).

Definition 1.2. Let X be a topological space and let ;: [0,1] — X
be two paths in X, i =0 and 1, such that v;(0) = z and v;(1) =y are
both independent of i.

A homotopy from ~ to v, is a continuous map

H:[0,1] % [0,1] — X,

such that ~v;(t) = H(i,t), where H(s,0) =z and H(s,1) =y, for all s
and t € [0, 1].

We say that X is stmply connected if any closed path in X is
homotopic to a constant path.

Intuitively this definition says that two paths are homotopic if one
can be continuously deformed to the other. Fortunately it is easy to
spot if a region (a connected open subset of C) is simply connected.
Let P! = CU {0}, the Riemann sphere.

Theorem 1.3. Let U be a region.
The following are equivalent:

(1) U is simply connected.
(2) P — U is connected.
(3) n(v;a) =0 for all cycles in U and all points a not in U.

Proof. We will show that (2) and (3) are equivalent and that both are
implied by (1) but we skip the proof that (2) and (3) imply (1).

We know that n(7v;a) is zero on the unbounded component of C — U
and constant on the connected components. Thus (2) clearly implies
(3). Suppose that P! — U = AU B is the disjoint union of two closed
sets. Suppose that co € B so that A is bounded. Let § > 0 be the

distance between A and B, the infimum of the distance between any
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two points @ € A and b € B. Tile the plane with squares of side less
than §/+/2. Pick this tiling so that a € A is the centre of a square.

Let
v =Y 0Q;
J

where the sum ranges over all squares (); which intersect A and 9Q);
denotes the oriented boundary of );. As a is contained in precisely
one square, we have

n(y;a) =1.
It is clear that v does not meet B, by our choice of 6. On the other hand
side which meets A is the side of two squares, and this sides appears

with the opposite orientation on both sides. Thus if 4/ is the cycle you
get by cancelling these paths in v then 4" does not meet A either.

(1) implies (3) follows from (|1.4)). O

Lemma 1.4. Ifvy and v, are homotopic paths in a region U and a ¢ U
then n(yo;a) = n(m;a).

Proof. Let H be a homotopy from 7y to v, and let v5: [0,1] — U be
the path v,(t) = H(s,t). It suffices to show that n(vs; a) is a continuous
function of s.

We will assume that we have chosen H to be C'. If sq and s; € [0, 1]
then

1 1
2mi(n(i@) ~n(uia) = [ —ode- [ s
7. Vs

zZ—a Z—a
0

S1

Y . U K B

731 ) a Vso (t) —a

) 4

/ Hl 81, 807 ) )—HI(So,t)(H(Sl,t) -

(817 t) - a)(H(S()? t) - CL)

which goes to zero as |s; — sg| goes to zero. O

Definition 1.5 (Cauchy’s Theorem). A cycle 7 in a region U is ho-
mologous to zero, with respect to U, if n(vy;a) = 0 for all points
acC-U.

Theorem 1.6. Let U be a region.
If f(2) is holomorphic on U then

(Aﬂddz:&

for every cycle v which is homologous to zero in U.
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Corollary 1.7. If f(z) is holomorphic on a simply connected region U
then

for every cycle v in U.

Corollary 1.8. If f(z) is holomorphic and nowhere zero in a simply
connected region U then it is possible to define single-valued branches

of log f(2) and {/f(z2).

Proof. By (1.7) we may pick a holomorphic function F(z) on U such
that

The derivative of the function
g(z) = f(z)e "

is zero and so g(z) is constant. If we pick any point a € U and one of
the infinitely many possible values of log f(a), then we have

el(z)=F(z0)+log f(20) — f(2)

and so we can set

log f(2) = F(z) — F(z0) + log f(20)-
Having defined the logarithm, set

/7(2) = expl.log £(2)). =

Proof of (1.6)). We assume first that U is bounded. Tile the plane
by with squares of side 6 > 0. Denote by @);, j € J, those squares
contained in U. As U is bounded, J is finite.

Let
Ty =Y 0Q;.
jeJ
Note that I'y is a sum of oriented line segments that are the sides of
exactly one ();. Let Us be the interior of the union of @);.

Let « be a cycle which is homologous to zero in U. Pick ¢ sufficiently
small so that v is contained in Us. Suppose that a € U — Uy;. It belongs
to at least one square ) which is not one of the @);. Pick a point b of
Q which is not in U. The line segment connecting a to b is contained
in @ and so it is not contained in Us. Therefore a and b belong to the
same connected component of C — Us and so

n(v;a) =n(y;b) =0,
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by assumption.
Let f be a holomorphic function on U. If z belongs to the interior
of @, then

[ fwydw  [fG) it = o
0 if j # Jo

21 Jog, w— %
1 f(w) dw
f(z)_Q_m'/pé—w—z'

Since both sides are continuous functions of z, this holds for all z € Us.

Therefore
1 d
/f(Z) dZ = /<% - %) dZ.

Since the integrand on the RHS is a continuous function of both z and
w over 'y x v it follows that we can switch the order of integration:

G L2 ) o= [ (o o) s

But the inner integral on the right is —n(y; w) = 0. Thus

/7 F(=)dz = 0.

Now suppose that U is unbounded. Let Uy be the intersection of U
with the disc |z| < R where R is large enough so that v belongs to Uj.
If a ¢ Uy then either a ¢ U or a does not belong to the disc; either way
n(7y;a) = 0 and so v is homologous to zero in U. O

and so
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