1. General form of Cauchys Formula

Definition 1.1. Let U be a region. A chain is a formal sum of paths $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$

$$
\gamma_{1}+\gamma_{2}+\cdots+\gamma_{k}
$$

where $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ are paths in U.
A chain γ is is a cycle if it is a sum of closed paths.
Note that since the integral is linear we can integrate over chains:

$$
\int_{\gamma} f(z) \mathrm{d} z=\int_{\gamma_{1}} f(z) \mathrm{d} z+\int_{\gamma_{2}} f(z) \mathrm{d} z+\cdots+\int_{\gamma_{k}} f(z) \mathrm{d} z
$$

Similarly we can define the winding number of a cycle around any point in the complement of the cycle:

$$
n(\gamma ; a)=n\left(\gamma_{1} ; a\right)+n\left(\gamma_{2} ; a\right)+\cdots+n\left(\gamma_{k} ; a\right) .
$$

Definition 1.2. Let X be a topological space and let $\gamma_{i}:[0,1] \longrightarrow X$ be two paths in $X, i=0$ and 1 , such that $\gamma_{i}(0)=x$ and $\gamma_{i}(1)=y$ are both independent of i.

A homotopy from γ_{0} to γ_{1} is a continuous map

$$
H:[0,1] \times[0,1] \longrightarrow X,
$$

such that $\gamma_{i}(t)=H(i, t)$, where $H(s, 0)=x$ and $H(s, 1)=y$, for all s and $t \in[0,1]$.

We say that X is simply connected if any closed path in X is homotopic to a constant path.

Intuitively this definition says that two paths are homotopic if one can be continuously deformed to the other. Fortunately it is easy to spot if a region (a connected open subset of \mathbb{C}) is simply connected. Let $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$, the Riemann sphere.

Theorem 1.3. Let U be a region.
The following are equivalent:
(1) U is simply connected.
(2) $\mathbb{P}^{1}-U$ is connected.
(3) $n(\gamma ; a)=0$ for all cycles in U and all points a not in U.

Proof. We will show that (2) and (3) are equivalent and that both are implied by (1) but we skip the proof that (2) and (3) imply (1).

We know that $n(\gamma ; a)$ is zero on the unbounded component of $\mathbb{C}-U$ and constant on the connected components. Thus (2) clearly implies (3). Suppose that $\mathbb{P}^{1}-U=A \cup B$ is the disjoint union of two closed sets. Suppose that $\infty \in B$ so that A is bounded. Let $\delta>0$ be the distance between A and B, the infimum of the distance between any
two points $a \in A$ and $b \in B$. Tile the plane with squares of side less than $\delta / \sqrt{2}$. Pick this tiling so that $a \in A$ is the centre of a square.

Let

$$
\gamma=\sum_{j} \partial Q_{j}
$$

where the sum ranges over all squares Q_{j} which intersect A and ∂Q_{j} denotes the oriented boundary of Q_{j}. As a is contained in precisely one square, we have

$$
n(\gamma ; a)=1 .
$$

It is clear that γ does not meet B, by our choice of δ. On the other hand side which meets A is the side of two squares, and this sides appears with the opposite orientation on both sides. Thus if γ^{\prime} is the cycle you get by cancelling these paths in γ then γ^{\prime} does not meet A either.
(1) implies (3) follows from (1.4).

Lemma 1.4. If γ_{0} and γ_{1} are homotopic paths in a region U and $a \notin U$ then $n\left(\gamma_{0} ; a\right)=n\left(\gamma_{1} ; a\right)$.

Proof. Let H be a homotopy from γ_{0} to γ_{1} and let $\gamma_{s}:[0,1] \longrightarrow U$ be the path $\gamma_{s}(t)=H(s, t)$. It suffices to show that $n\left(\gamma_{s} ; a\right)$ is a continuous function of s.

We will assume that we have chosen H to be \mathcal{C}^{1}. If s_{0} and $s_{1} \in[0,1]$ then

$$
\begin{aligned}
2 \pi i\left(n\left(\gamma_{s_{1}} ; a\right)-n\left(\gamma_{s_{0}} ; a\right)\right) & =\int_{\gamma_{s_{1}}} \frac{1}{z-a} \mathrm{~d} z-\int_{\gamma_{s_{0}}} \frac{1}{z-a} \mathrm{~d} z \\
& =\int_{0}^{1} \frac{\gamma_{s_{1}}^{\prime}(t)}{\gamma_{s_{1}}(t)-a}-\frac{\gamma_{s_{0}}^{\prime}(t)}{\gamma_{s_{0}}(t)-a} \mathrm{~d} t \\
& =\int_{0}^{1} \frac{H^{\prime}\left(s_{1}, t\right)\left(H\left(s_{0}, t\right)-a\right)-H^{\prime}\left(s_{0}, t\right)\left(H\left(s_{1}, t\right)-a\right)}{\left(H\left(s_{1}, t\right)-a\right)\left(H\left(s_{0}, t\right)-a\right)} \mathrm{d} t
\end{aligned}
$$

which goes to zero as $\left|s_{1}-s_{0}\right|$ goes to zero.

Definition 1.5 (Cauchy's Theorem). A cycle γ in a region U is ho-

 mologous to zero, with respect to U, if $n(\gamma ; a)=0$ for all points $a \in \mathbb{C}-U$.Theorem 1.6. Let U be a region.
If $f(z)$ is holomorphic on U then

$$
\int_{\gamma} f(z) \mathrm{d} z=0,
$$

for every cycle γ which is homologous to zero in U.

Corollary 1.7. If $f(z)$ is holomorphic on a simply connected region U then

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

for every cycle γ in U.
Corollary 1.8. If $f(z)$ is holomorphic and nowhere zero in a simply connected region U then it is possible to define single-valued branches of $\log f(z)$ and $\sqrt[n]{f(z)}$.
Proof. By (1.7) we may pick a holomorphic function $F(z)$ on U such that

$$
F^{\prime}(z)=\frac{f^{\prime}(z)}{f(z)}
$$

The derivative of the function

$$
g(z)=f(z) e^{-F(z)}
$$

is zero and so $g(z)$ is constant. If we pick any point $a \in U$ and one of the infinitely many possible values of $\log f(a)$, then we have

$$
e^{F(z)-F\left(z_{0}\right)+\log f\left(z_{0}\right)}=f(z)
$$

and so we can set

$$
\log f(z)=F(z)-F\left(z_{0}\right)+\log f\left(z_{0}\right)
$$

Having defined the logarithm, set

$$
\sqrt[n]{f(z)}=\exp \left(\frac{1}{n} \log f(z)\right)
$$

Proof of (1.6). We assume first that U is bounded. Tile the plane by with squares of side $\delta>0$. Denote by $Q_{j}, j \in J$, those squares contained in U. As U is bounded, J is finite.

Let

$$
\Gamma_{\delta}=\sum_{j \in J} \partial Q_{j} .
$$

Note that Γ_{δ} is a sum of oriented line segments that are the sides of exactly one Q_{j}. Let U_{δ} be the interior of the union of Q_{j}.

Let γ be a cycle which is homologous to zero in U. Pick δ sufficiently small so that γ is contained in U_{δ}. Suppose that $a \in U-U_{\delta}$. It belongs to at least one square Q which is not one of the Q_{j}. Pick a point b of Q which is not in U. The line segment connecting a to b is contained in Q and so it is not contained in U_{δ}. Therefore a and b belong to the same connected component of $\mathbb{C}-U_{\delta}$ and so

$$
n(\gamma ; a)=\underset{3}{n}(\gamma ; b)=0,
$$

by assumption.
Let f be a holomorphic function on U. If z belongs to the interior of $Q_{j_{0}}$ then

$$
\frac{1}{2 \pi i} \int_{\partial Q_{j}} \frac{f(w) \mathrm{d} w}{w-z}= \begin{cases}f(z) & \text { if } j=j_{0} \\ 0 & \text { if } j \neq j_{0}\end{cases}
$$

and so

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma_{\delta}} \frac{f(w) \mathrm{d} w}{w-z}
$$

Since both sides are continuous functions of z, this holds for all $z \in U_{\delta}$.
Therefore

$$
\int_{\gamma} f(z) \mathrm{d} z=\int_{\gamma}\left(\frac{1}{2 \pi i} \int_{\Gamma_{\delta}} \frac{f(w) \mathrm{d} w}{w-z}\right) \mathrm{d} z
$$

Since the integrand on the RHS is a continuous function of both z and w over $\Gamma_{\delta} \times \gamma$ it follows that we can switch the order of integration:

$$
\int_{\gamma}\left(\frac{1}{2 \pi i} \int_{\Gamma_{\delta}} \frac{f(w) \mathrm{d} w}{w-z}\right) \mathrm{d} z=\int_{\Gamma_{\delta}}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{\mathrm{d} w}{w-z}\right) f(w) \mathrm{d} z
$$

But the inner integral on the right is $-n(\gamma ; w)=0$. Thus

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

Now suppose that U is unbounded. Let U_{0} be the intersection of U with the disc $|z|<R$ where R is large enough so that γ belongs to U_{0}. If $a \notin U_{0}$ then either $a \notin U$ or a does not belong to the disc; either way $n(\gamma ; a)=0$ and so γ is homologous to zero in U_{0}.

