
1. General form of Cauchys Formula

Definition 1.1. Let U be a region. A chain is a formal sum of paths
γ1, γ2, . . . , γk

γ1 + γ2 + · · ·+ γk,

where γ1, γ2, . . . , γk are paths in U .
A chain γ is is a cycle if it is a sum of closed paths.

Note that since the integral is linear we can integrate over chains:∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz + · · ·+
∫
γk

f(z) dz.

Similarly we can define the winding number of a cycle around any point
in the complement of the cycle:

n(γ; a) = n(γ1; a) + n(γ2; a) + · · ·+ n(γk; a).

Definition 1.2. Let X be a topological space and let γi : [0, 1] −→ X
be two paths in X, i = 0 and 1, such that γi(0) = x and γi(1) = y are
both independent of i.

A homotopy from γ0 to γ1 is a continuous map

H : [0, 1]× [0, 1] −→ X,

such that γi(t) = H(i, t), where H(s, 0) = x and H(s, 1) = y, for all s
and t ∈ [0, 1].

We say that X is simply connected if any closed path in X is
homotopic to a constant path.

Intuitively this definition says that two paths are homotopic if one
can be continuously deformed to the other. Fortunately it is easy to
spot if a region (a connected open subset of C) is simply connected.
Let P1 = C ∪ {∞}, the Riemann sphere.

Theorem 1.3. Let U be a region.
The following are equivalent:

(1) U is simply connected.
(2) P1 − U is connected.
(3) n(γ; a) = 0 for all cycles in U and all points a not in U .

Proof. We will show that (2) and (3) are equivalent and that both are
implied by (1) but we skip the proof that (2) and (3) imply (1).

We know that n(γ; a) is zero on the unbounded component of C−U
and constant on the connected components. Thus (2) clearly implies
(3). Suppose that P1 − U = A ∪ B is the disjoint union of two closed
sets. Suppose that ∞ ∈ B so that A is bounded. Let δ > 0 be the
distance between A and B, the infimum of the distance between any
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two points a ∈ A and b ∈ B. Tile the plane with squares of side less
than δ/

√
2. Pick this tiling so that a ∈ A is the centre of a square.

Let

γ =
∑
j

∂Qj,

where the sum ranges over all squares Qj which intersect A and ∂Qj

denotes the oriented boundary of Qj. As a is contained in precisely
one square, we have

n(γ; a) = 1.

It is clear that γ does not meet B, by our choice of δ. On the other hand
side which meets A is the side of two squares, and this sides appears
with the opposite orientation on both sides. Thus if γ′ is the cycle you
get by cancelling these paths in γ then γ′ does not meet A either.

(1) implies (3) follows from (1.4). �

Lemma 1.4. If γ0 and γ1 are homotopic paths in a region U and a /∈ U
then n(γ0; a) = n(γ1; a).

Proof. Let H be a homotopy from γ0 to γ1 and let γs : [0, 1] −→ U be
the path γs(t) = H(s, t). It suffices to show that n(γs; a) is a continuous
function of s.

We will assume that we have chosen H to be C1. If s0 and s1 ∈ [0, 1]
then

2πi(n(γs1 ; a)− n(γs0 ; a)) =

∫
γs1

1

z − a
dz −

∫
γs0

1

z − a
dz

=

∫ 1

0

γ′s1(t)

γs1(t)− a
−

γ′s0(t)

γs0(t)− a
dt

=

∫ 1

0

H ′(s1, t)(H(s0, t)− a)−H ′(s0, t)(H(s1, t)− a)

(H(s1, t)− a)(H(s0, t)− a)
dt,

which goes to zero as |s1 − s0| goes to zero. �

Definition 1.5 (Cauchy’s Theorem). A cycle γ in a region U is ho-
mologous to zero, with respect to U , if n(γ; a) = 0 for all points
a ∈ C− U .

Theorem 1.6. Let U be a region.
If f(z) is holomorphic on U then∫

γ

f(z) dz = 0,

for every cycle γ which is homologous to zero in U .
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Corollary 1.7. If f(z) is holomorphic on a simply connected region U
then ∫

γ

f(z) dz = 0,

for every cycle γ in U .

Corollary 1.8. If f(z) is holomorphic and nowhere zero in a simply
connected region U then it is possible to define single-valued branches
of log f(z) and n

√
f(z).

Proof. By (1.7) we may pick a holomorphic function F (z) on U such
that

F ′(z) =
f ′(z)

f(z)
.

The derivative of the function

g(z) = f(z)e−F (z)

is zero and so g(z) is constant. If we pick any point a ∈ U and one of
the infinitely many possible values of log f(a), then we have

eF (z)−F (z0)+log f(z0) = f(z)

and so we can set

log f(z) = F (z)− F (z0) + log f(z0).

Having defined the logarithm, set

n
√
f(z) = exp(

1

n
log f(z)). �

Proof of (1.6). We assume first that U is bounded. Tile the plane
by with squares of side δ > 0. Denote by Qj, j ∈ J , those squares
contained in U . As U is bounded, J is finite.

Let
Γδ =

∑
j∈J

∂Qj.

Note that Γδ is a sum of oriented line segments that are the sides of
exactly one Qj. Let Uδ be the interior of the union of Qj.

Let γ be a cycle which is homologous to zero in U . Pick δ sufficiently
small so that γ is contained in Uδ. Suppose that a ∈ U−Uδ. It belongs
to at least one square Q which is not one of the Qj. Pick a point b of
Q which is not in U . The line segment connecting a to b is contained
in Q and so it is not contained in Uδ. Therefore a and b belong to the
same connected component of C− Uδ and so

n(γ; a) = n(γ; b) = 0,
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by assumption.
Let f be a holomorphic function on U . If z belongs to the interior

of Qj0 then

1

2πi

∫
∂Qj

f(w) dw

w − z
=

{
f(z) if j = j0

0 if j 6= j0

and so

f(z) =
1

2πi

∫
Γδ

f(w) dw

w − z
.

Since both sides are continuous functions of z, this holds for all z ∈ Uδ.
Therefore ∫

γ

f(z) dz =

∫
γ

(
1

2πi

∫
Γδ

f(w) dw

w − z

)
dz.

Since the integrand on the RHS is a continuous function of both z and
w over Γδ × γ it follows that we can switch the order of integration:∫

γ

(
1

2πi

∫
Γδ

f(w) dw

w − z

)
dz =

∫
Γδ

(
1

2πi

∫
γ

dw

w − z

)
f(w) dz.

But the inner integral on the right is −n(γ;w) = 0. Thus∫
γ

f(z) dz = 0.

Now suppose that U is unbounded. Let U0 be the intersection of U
with the disc |z| < R where R is large enough so that γ belongs to U0.
If a /∈ U0 then either a /∈ U or a does not belong to the disc; either way
n(γ; a) = 0 and so γ is homologous to zero in U0. �
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