
10. Riemman Mapping Theorem

Recall that a region U is by definition simply connected if every
closed path is homotopic to a constant path. This is equivalent to the
condition that P1 − U is connected. Recall that we say that a map
f : U −→ V between two regions U and V is biholomorphic if it is a
bijection and both f and its inverse are holomorphic (equivalently the
derivative of f is nowhere zero). We say that a region U is proper if it
is a proper subset of C, that is, U is neither empty nor the whole of C.

If z is a complex number then z > 0 means that z is real (and greater
than zero).

Theorem 10.1 (Riemann Mapping Theorem). Let U ⊂ C be a simply
connected proper open subset.

Then U is biholomorphic to the interior of the unit disk, that is,
there is a biholomorphic map

f : U −→ ∆,

where
∆ = { z ∈ C | |z| < 1 }.

Moreover if one fixes z0 ∈ U then there is a unique such map such that
f(z0) = 0 and f ′(z0) > 0.

Obviously this is a key result, which is very striking. In fact this
result also has some very important practical applications as well.

We first observe that uniqueness is clear. Indeed, if f1 and f2 are
two such mappings, then the composition,

g = f1 ◦ f−12 : ∆ −→ ∆,

is a map such that g(0) = 0 and g′(0) > 0. Recall that by the Schwarz
Lemma an automorphism of the unit disk, which fixes the origin, is of
the form z −→ az, for some complex number a of absolute value 1. It
follows that g(z) = z, so that f1 = f2.

Note also that C is not biholomorphic to the unit disk, by Liouville’s
Theorem. Thus it is crucial that U is a proper subset of C.

We now turn to existence. The idea is to consider the family

F = { f : U −→ ∆ | f is holomorphic, injective, f(z0) = 0 and f ′(z0) > 0. }
It will turn out that the map we are looking for is the unique element

whose derivative at f ′(z0) is maximal. The proof of this fact has three
parts,

(1) Show that F is non-empty.
(2) Show that there is an element whose derivative is maximal.
(3) Show that this element has the required properties.
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We start with the first and last part.
Let U be a domain and let (X, d) be a metric space. We will be

interested in families (that is, sets) F of continuous functions from U
to X

Definition 10.2. A family F is said to be normal on U if every
sequence of functions fn has a subsequence which converges uniformly
on every compact subset of U .

Note one subtle part of the definition. We do not require the limit
f to be an element of F.

Theorem 10.3. A family F of holomorphic functions is normal if and
only if the functions are uniformly bounded on compact subsets.

Recall two results:

Theorem 10.4 (Weierstrass). Let

U1 ⊂ U2 ⊂ U3 ⊂ . . . ,

be an infinite sequence of domains whose union is U . Suppose that
fn(z) is a sequence of holomorphic function on Un, which tends to a
limit function f(z) on U , uniformly on compact subsets.

Then f(z) is holomorphic. Moreover f ′n(z) converges uniformly on
compact subsets to f ′(z).

Theorem 10.5 (Hurwitz). Suppose that the holomorphic functions
fn(z) converge to a function f(z) on U , uniformly on compact sub-
sets.

If the functions fn(z) are nowhere zero then either f(z) is identically
zero or it is nowhere zero.

Assuming (10.3), we are now ready to complete the proof of the
Riemann Mapping Theorem:

Proof of (10.1). We first show that F is non-empty.
Pick a point a /∈ U . As U is simply connected it is possible to define

a single branch h(z) of
√
z − a on U . Then h is injective. Moreover

if h takes the value w it does not take the value −w. By the open
mapping theorem the image of h contains a disc |w − h(z0)| < ρ and
so it does not intersect the disc |w+ h(z0)| < ρ. Equivalently, if z ∈ U
then |h(z) + h(z0)| ≥ ρ. In particular |2h(z0)| ≥ ρ.

We now check that

f(z) =
ρ

4

|h′(z0)|
|h(z0)|2

h(z)− h(z0)

h(z) + h(z0)
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belongs to F. f(z) is injective as it is the composition of h(z) with a
Möbius transformation. Clearly f(z0) = 0.

f ′(z0) =
ρ

8

|h′(z0)|
|h(z0)|2

> 0.

On the other hand∣∣∣∣h(z)− h(z0)

h(z) + h(z0)

∣∣∣∣ = |h(z0)| ·
∣∣∣∣ 1

h(z0)
− 2

h(z) + h(z0)

∣∣∣∣ ≤ 4|h(z0)|
ρ

.

Thus f ∈ F and so F is non-empty.
Let B be a least upper bound for the derivatives f ′(z0) as f ranges

in F. Pick gi ∈ F such that g′i(z0) approaches B. By (10.3) F is a
normal family. Therefore we may find a subsequence which converges
to a holomorphic function f(z). By (10.4) f ′(z0) = B > 0. Clearly
|f(z)| ≤ 1 on U , so that in fact |f(z)| < 1 on U by the open mapping
theorem.

Now f is not constant as f ′(z0) 6= 0. Let z1 ∈ U . Consider the
functions g1(z) = g(z)− g(z1), where g ∈ F. They are nowhere zero on
U −{z1}, as g is injective. As f(z)− f(z1) is a limit of such functions,
and f(z)−f(z1) is not identically zero, (10.5) implies that f(z)−f(z1)
is nowhere zero. But then f is injective. Thus f ∈ F and f(z) is an
element of F with maximal derivative at z0.

Suppose that f is not surjective. Pick w0 not in the image. As U is
simply connected, we may find a holomorphic branch for

F (z) =

√
f(z)− w0

1− w̄0f(z)
.

Note that F is the composition of f , the automorphism of the unit
disc

z −→ z − w0

1− w̄0z
,

and the square root. Thus F is injective and |F (z)| < 1.
Let

G(z) =
|F ′(z0)|
F ′(z0)

F (z)− F (z0)

1− F (z0)F (z)
.

Note that G is the composition of F and the automorphism of the
unit disc

z −→ F (z)− F (z0)

1− F (z0)z
.
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Thus G is injective and |G(z)| < 1. Clearly G(z0) = 0. Moreover
G′(z0) > 0. In fact

G′(z0) =
|F ′(z0)|

1− |F (z0)|2
=

1 + |w0|
2
√
|w0|

B > B,

a contradiction. �

The key point about the definition of G is as follows. We can use the
formula for G to express f as a function of w = G(z), which induces a
map of the unit disc |w| < 1 to itself. The inequality

f ′(z0) < G′(z0),

is then a consequence of Schwarz’s lemma.
We now turn to the proof of (10.3). We will need to develop a lot of

the theory of metric spaces and function spaces.
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