
11. Normal families

Definition 11.1. The functions in a family F are said to be equicon-
tinuous on a set E ⊂ U if for every ε > 0 there exists a δ > 0 such
that d(f(z), f(z0)) < ε for all |z − z0| < δ, z, z0 in E, simultaneously
for all f ∈ F.

Recall:

Definition 11.2. A family F is said to be normal on U if every
sequence of functions fn has a subsequence which converges uniformly
on every compact subset of U .

Definition 11.3. We say that an increasing sequence of compacts sub-
sets Ek exhausts U if

U =
⋃
k

Ek.

Example 11.4. It is easy to write down a sequence of subsets which
exhausts U . For example, for each k let

Ek = { z ∈ U | |z| ≤ k and |z − z0| ≥ 1/k for all z0 ∈ C− U }.

We can make the set of functions from U to X into a metric space
as follows. First replace the distance function d on X by

δ(a, b) =
d(a, b)

1 + d(a, b)
.

It is easy to check that δ satisfies the triangle inequality and it is clear
that δ is bounded. Given f and g, let

δk(f, g) = sup
z∈Ek

δ(f(z), g(z)).

Finally let

ρ(f, g) =
∞∑
k=1

δk(f, g)2−k.

Clearly ρ is finite and it is easy to check that with the definition of
distance the space of all functions becomes a metric space.

Lemma 11.5. A sequence of functions fn converges uniformly to f on
compact subsets if and only if it converges to f with respect to ρ.

Proof. Suppose that fn converges to f with respect to ρ. Pick a com-
pact subset B and ε > 0. Then we can find k such that B ⊂ Ek. By
assumption we can find n0 such that

δ(f, fn) ≤ ε

2k
for all n ≥ n0.
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In this case
δk(f, fn) ≤ ε for all n ≥ n0,

so that

δ(f(x), fn(x)) ≤ ε for all n ≥ n0, x ∈ B.
Conversely suppose that f tends to fn uniformly on compact subsets.

Pick ε > 0. Then we may find k0 such that
∞∑

k=k0

1

2k
<
ε

2
.

Since fn tends uniformly to f on Ek0 , we may find n0 such that

δ(f(x), fn(x)) <
ε

2
for all n ≥ n0, x ∈ Ek0 .

But then
δk(f, fn) ≤ ε

2
for all k ≤ k0

so that

δ(f, fn) =

k0∑
k=1

2−kδk(f, fn) +
∑
k>k0

2−kδk(f, fn)

≤ ε. �

Recall that a metric space is compact if and only if every sequence
has a convergent subsequence.

Theorem 11.6. A family F is normal if and only if its closure with
respect to ρ is compact.

Proof. We may suppose that F is closed, and the result follows from
(11.5). �

Recall some more notions from the theory of metric spaces:

Definition 11.7. We say that a metric space X is totally bounded
if for every ε > 0 there are points x1, x2, . . . , xn ∈ X such that for every
x ∈ X we may find 1 ≤ i ≤ n such that d(x, xi) < ε.

Lemma 11.8. Y ⊂ X is totally bounded if and only if its closure Z is
totally bounded.

Proof. One direction is clear; if Y is totally bounded then so is Z. Now
suppose that Z is totally bounded. Pick ε > 0. Then we may find
x1, x2, . . . , xn ∈ Z such that for any x ∈ Z we may find xi such that
d(x, xi) < ε/2. Pick yi ∈ Y such that d(xi, yi) < ε/2. Then given y ∈ Y
we may find xi such that d(xi, y) < ε/2. But then

d(yi, y) ≤ d(xi, yi) + d(xi, y) < ε. �
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Lemma 11.9. If X is totally bounded then every sequence has a Cauchy
subsequence.

Proof. Let y1, y2, . . . be an infinite sequence in X. We will inductively
construct for each k a subsequence xnk of xnk−1. Given k we may find
x1, x2, . . . , xm such that if x ∈ X then d(x, xi) < 1/2k. Therefore we
may pick i such that

{ j | d(yj, xi) < 1/2k }
is infinite. Therefore we may find a subsequence xnk such that d(xnk, xi) <
1/2k. It follows by the triangle inequality that d(xnk, xn′k) < 1/k. This
finishes the construction of the subsequences.

The diagonal subsequence is the subsequence we are looking for. �

Lemma 11.10. The set of functions from U to X is complete if and
only if X is complete.

Proof. Clear. �

Putting all of this together, we get:

Lemma 11.11. If X is complete then F is normal if and only if it is
totally bounded.

Proof. If X is complete then the space of functions from U to X is
complete by (11.10). By (11.8) we may assume that F is closed, so
that F is a complete totally bounded metric space. But then F is
compact by (11.9), so that it is normal by (11.6). �

We can restate some of this in terms of the space X, as opposed to
F:

Proposition 11.12. The family F is totally bounded if and only if for
every compact subset E ⊂ U and every ε > 0 it is possible to find
f1, f2, . . . , fn ∈ F such that every f ∈ F satisfies δ(f(x), fj(x)) < ε, for
some j, and every x ∈ E.

Proof. Suppose that F is totally bounded. Pick ε > 0. By assumption
we may find f1, f2, . . . , fn such that for every f ∈ F, we may find j
such that ρ(f, fj) < ε.

Pick a compact subset E. Then we may find k such that E ⊂ Ek.
Then we may find j such that δ(f(x), fj(x)) < ε

2k
for every x ∈ Ek.

But then δ(f(x), fj(x)) < ε for every x ∈ E ⊂ Ek.
Now consider the reverse direction. Pick ε > 0. Then we may find

k0 such that

2−k0 <
ε

2
.
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Pick j such that

δ(f(x), fj(x)) <
ε

2
for every x ∈ Ek0 .

Then

ρ(f, fj) =
∑
k

δk(f, fj)

=
∑
k≤k0

δk(f, fj) +
∑
k>k0

δk(f, fj)

< ε. �

Theorem 11.13 (Ascoli-Arzola). A family of continuous functions F
with values in a complete metric space X is normal in the region U ⊂ C
if and only if

(1) F is equicontinuous on every compact subset E ⊂ U , and
(2) for any z ∈ U the values f(z), f ∈ F lie in a compact subset of

X.

Proof. Suppose that F is normal. We give two proofs that (1) must
hold.

For the first proof, pick ε > 0. By (11.12), we may find f1, f2, . . . , fn
such that for every f ∈ F we may find j such that δ(f(z), fj(z)) < ε

3
for every z ∈ E. As each fj is uniformly continuous on E, we can
find δ > 0 such that for every j and z, z0 ∈ E with |z − z0| < δ,
δ(fj(z), fj(z0)) <

ε
3
. But then

δ(f(z), f(z0)) ≤ δ(f(z), fj(z)) + δ(fj(z), fj(z0)) + δ(fj(z0), f(z0)) < ε.

For the second proof, suppose that F is not equicontinuous on E.
Then there is an ε > 0, a sequence of pairs of points zn, z′n, with
|zn − z′n| → 0, and functions fn such that δ(fn(z), fn(z′)) ≥ ε. As E is
compact, possibly replacing zn by a subsequence, we may assume that
the points zn and z′n converge to a point z ∈ E. As F is normal, possibly
passing to a subsequence, we may also assume that the functions fn
converge to a function f uniformly on E. f is continuous on E, whence
uniformly continuous on E.

Pick n0 such that

δ(fn(z), f(z)) <
ε

3
and δ(f(zn), f(z′n)) <

ε

3
,

for all z ∈ E and n ≥ n0. Then

δ(fn(zn), fn(z′n)) ≤ δ(fn(zn), f(zn))+δ(f(zn), f(z′n))+δ(f(z′n), fn(z′n)) < ε,

a contradiction.
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We now turn to the proof of (2). Pick z ∈ U . We will show that the
closure of the set

{ f(z) | f ∈ F },
is compact. Let wn be a sequence in the closure. For each n, pick
fn ∈ F such that δ(fn(z), wn) < 1/n. As F is a normal family, passing
to a subsequence, we may assume that fn converges to a continuous
function f . But then wn converges to f(z).

Now suppose that (1) and (2) holds. We want to show that F is
normal. Enumerate ζn the points with rational coordinates. Then the
points ζn are everywhere dense. Let fn be a sequence of functions in
F. We are going to iteratively construct subsequences nik for each k.
nik will be a subsequence of nik−1 such that fnik

(ζk) converges. The
existence of these subsequences is immediate from (2). Let fn be the
sequence obtained by taking the diagonal sequence. Then the sequence
fn(ζk) converges for all k.

Suppose that E ⊂ U is a compact subset. We will show that fn
converges uniformly on E. Pick ε > 0. As F is equicontinuous we may
find δ > 0 such that

δ(f(z), f(z′)) <
ε

3
whenever |z − z′| < δ, f ∈ F.

As E is compact, it is covered by finitely many balls of radius δ/2. Pick
one ζk from each such ball. Then we may find an index n0 such that

δ(fn(ζk), fm(ζk)) <
ε

3
for all n,m ≥ n0.

Pick z ∈ E. Then |z − ζk| < δ for at least one k. But then

δ(fn(z), fm(z)) ≤ δ(fn(z), fn(ζk)) + δ(fn(ζk), fm(ζk)) + δ(fm(ζk), fm(z))

< ε.

As the values fn(z) belong to a compact subset, and X is complete,
the pointwise limit f of the fn exists, and f is a uniform limit of the
fn on E. �
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