
13. Riemann surfaces

Definition 13.1. Let X be a topological space.
We say that X is a topological manifold, if

(1) X is Hausdorff,
(2) X is 2nd countable (that is, there is a base for the topology

which is countable),
(3) for every point x ∈ X, there is an open neighbourhood U ⊂ X,

an open subset V ⊂ Rn and a homeomorphism f : U −→ V .

The dimension of X at x is equal to n. The map f is called a
chart.

The dimension is locally constant, so that the dimension is constant
on the connected components of X. The space of topological mani-
folds and continuous maps forms a full subcategory of the category of
topological spaces and continuous maps.

Example 13.2.

(1) Any open subset of Rn is a topological manifold of dimension n.
(A countable base of Rn is given by balls of rational radius with
rational coordinates and any subset of a 2nd countable topolog-
ical manifold is 2nd countable).

(2) Let Y be the disjoint union of two copies of (0, 1). Let ∼ be
the equivalence relation where the two corresponding points of
the interval are equivalent, except the point 1/2. Let X = Y/ ∼
be the quotient. Then X is 2nd countable, and it is locally
homeomorphic to R but it is not Hausdorff.

(3) Let Y = ω1 × [0, 1) − {(0, 0)}. Then Y is a topological space
with the order topology, called the very long ray. Let X be the
space obtained by joining two copies of Y together, along the
sets (0, 1)× {0}, but using the map

t −→ 1− t.

Then X is called the very long line. X (and indeed Y ) is Haus-
dorff and locally homeomorphic to R, but it is not 2nd countable.

We are interested in putting extra structure on a topological mani-
fold. To this end, we need the following:

Definition 13.3. Let X be a topological manifold. An atlas is an open
cover {Uα} by charts hα : Uα −→ Vα ⊂ Rn. Given α and β, the tran-
sition functions gαβ : Vαβ −→ Vβα are the composition of h−1α : Vαβ −→
Uαβ = Uα ∩ Uβ and hβ : Uαβ −→ Vβα where Vαβ = hα(Uαβ).
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Definition 13.4. We say that a topological manifold X is Cp if there
is an atlas such that the transition functions are Cp.

A particularly interesting example is when p =∞, in which case we
sometimes say that X is a smooth manifold. Suppose that we are given
a continuous map f : M −→ N of Cp-manifolds. Using the charts we
can say what it means for f to be Cp. In particular we get a category
of Cp-manifolds.

Definition 13.5. A Riemann surface X is a topological space,
which has an atlas where Vα ⊂ C and the transition functions are
holomorphic.

As above we get a category:

Definition 13.6. Let f : X −→ Y be a continuous map of Riemann
surfaces. We say that f is holomorphic if there are atlases on X and
Y such that the induced map between charts is holomorphic.

Note also that any Riemann surface is naturally a C∞-manifold of
dimension two, that is, a Riemann surface is a smooth surface. Note
also that a Riemann surface has a natural orientation. Indeed multi-
plication by i determines the difference between left and right. Thus
a Riemann surface is an oriented surface. Since a map between open
subsets of C is holomorphic if and only if it is conformal and preserves
orientation, in fact a Riemann surface is the same as a conformal struc-
ture on an oriented surface (intuitively a conformal structure is nothing
more than the specification of angles between germs of arcs).

Example 13.7. Any open subset of C is a Riemann surface.

Example 13.8. The Riemann sphere is a Riemann surface. In this
case the transition functions are z −→ 1/z. The Riemann sphere is
naturally isomorphic to P1.

To show that there are in fact many compact Riemann surfaces, let
us see how to associate to a polyhedral surface P in R3 a Riemann
surface X. By a polyhedral surface I mean a surface which is the
union of finitely many faces. Each face is a closed subset of a plane of
which the boundary is finitely many line segments. Two line segments
intersect (if they intersect at all) in a vertex (a single point) and every
line segment is contained in exactly two faces.

We assume that to every plane there is associated a normal direction
~N (so that the face is oriented). To every line segment in a face, we
let ~n be the vector orthogonal to the line pointing into the face. Then
we orient the line segment by ~n× ~N . We assume that the line has the
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opposite orientation given by its inclusion in the other face to which it
belongs.

Consider the following atlas. To every face, take the interior of the
face and consider any isometry to the plane, which sends the normal
~N to the positive normal to the plane. To every interior point of a
line segement, choose two half circles of the same radius centred at the
point, contained in either face, and identify this with a circle of the
same radius in the plane. Note that the transition functions are of the
form z −→ az + b, which are holomorphic. For a vertex, let αi be the
internal angle at each incident line segment. Let α be the sum of the
internal angles. Then we may identify the segments of the circles with
a circle in the plane, using the map z −→ z2π/α. Note that since every
vertex has only one chart, we don’t need to check anything about the
transition functions at the vertices themselves. On the other hand, this
map is holomorphic away from zero.

We have already seen that is possible to attach a Riemann surface to
a multi-valued locally holomorphic function. For a quite complicated
example consider the pair of variables connected by

z =
1

2

(
w +

1

w

)
and w = z −

√
z2 − 1.

The square root is zero at z = ±1. We obtain a branch of w by
cutting out the interval [−1, 1]. The Riemann surface associated to w
is obtained by taking two copies of C, cutting them along the interval
[−1, 1] and joining opposite edges. In fact the Riemann surface we
get this way is a copy of C∗, since it is just the w-plane. Note that
something interesting happens above the two points ±1. Above every
other point there are two points but above these points there is just
one point.

It is interesting to consider the Riemann surface associated to log z.
In this case we need infinitely many copies of C, one for every integer
multiple of 2πi. These copies are joined by cutting along the positive
real axis and joining the lower edge to the upper edge of the copy one
level higher (so that we joining the upper edge to the lower edge of the
copy one level lower). One again the resulting Riemann surface is not
complicated, just a copy of C. The map back is just

C −→ C∗ given by w −→ ew = z.

Suppose that we start with a polynomial in two variables f(z, w).
Provided the gradient doesn’t vanish anywhere on the zero locus, the
zero locus is a Riemann surface. Since the gradient doesn’t vanish it
follows that one of the two projections down to either the z-axis or the
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w-axis has a continuous inverse, by the implicit function theorem. The
transition functions are holomorphic, since solving for one variable in
terms of the other, we get a holomorphic function.

For example, consider

f(z, w) = w2 − 2wz + 1.

If we solve for w we get

w = z ±
√
z2 − 1,

so this is just another way to think of the Riemann surface associated
to the function

z −
√
z2 − 1.

Given that there are so many Riemann surfaces it is somewhat sur-
prising that:

Theorem 13.9 (Uniformisation Theorem). Let R be a simply con-
nected Riemann surface.

Then R is biholomorphic to one of

(1) The unit disk ∆.
(2) C.
(3) The Riemann sphere P1.

Note that these three cases are mutually exclusive. (1) and (2) are
not biholomorphic by Liouville’s theorem. (3) is compact and (1) and
(2) are not, so that (1) and (2) are not even homeomorphic to (3).

Consider how one might go about proving (13.9). Note that if we
remove a point from P1 then we get C. The key thing is then to prove
that if R is a simply connected Riemann surface which is not compact
then R is biholomorphic to an open subset of C. In this case we can
apply the Riemann mapping theorem to conclude we are in case (1) or
(2).

An open subset of C has a global non-constant holomorphic func-
tion, namely the map z −→ z. On the other hand, if we have a global
non-constant holomorphic function then we are clearly very close to
showing that we have an open subset of C. At the very least we get a
holomorphic map R −→ C. This is the important result to check, that
every non-compact simply connected Riemann surface has a holomor-
phic function.

Now if we have a global holomorphic map we have a global harmonic
map, just by taking the real part of the holomorphic map. Conversely
on a simply connected Riemann surface a global harmonic map gives
rise to a global holomorphic map. As usual the potential ambiguity

4



between possible choices of a harmonic conjugate on different charts is
not a problem on a simply connected Riemann surface.

So how to produce harmonic functions? Well harmonic functions
correspond to potential functions in electrostatics. Imagine the follow-
ing thought experiment; imagine that the Riemann surface is made
out of metal. If you drop an electron onto the surface then the charge
will distribute itself according to the usual laws of physics, so that you
will get a potential. From the potential one can construct a harmonic
function which goes to −∞ at the point you put the electron. In a
coordinate chart around the electron the harmonic function behaves
like log r.

So this gives us a clear line of attack. Prove that every simply con-
nected Riemann surface admits a harmonic function which behaves
like log r in a neighbourhood of one point. We will need to develop the
theory of harmonic functions.
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