
14. Subharmonic functions

Definition 14.1. Let u : U −→ R be a continuous function. We say
that u satisfies the mean-value property if

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ,

whenever the disk |z − z0| ≤ r is contained in U

Note that the mean-value property implies the maximum principle.
In fact it suffices that the mean-value property holds in a small ball
about every point of z0 ∈ U , whose radius depends on z0.

Theorem 14.2. A continuous function u(z) on a domain U satisfies
the mean-value property if and only if it is harmonic.

Proof. If u is harmonic we have already seen that it must satisfy the
mean-value property.

Now suppose that u satisfies the mean-value property. Let v be
any harmonic function. Then the difference u − v also satisfies the
mean-value property. In particular the difference satisfies the maximum
principle.

Pick a ball contained in U for which u satisfies the mean-value prop-
erty. Let U be the restriction of u to the boundary of this ball and let
v = PU be the Poisson integral. Then v is a harmonic function which
agrees with u on the boundary of the ball. Thus the difference u − v
satisfies the mean-value property and is zero on the boundary. By the
maximum principle u− v is zero so that u = v is harmonic on the ball.
Thus u is harmonic. �

Using (14.2) it is clear that we could have defined a function to be
harmonic if and only if it satisfies the mean-value property, so that
we can give a definition of harmonic which makes no reference to the
existence of partial derivatives.

Theorem 14.3 (Harnack’s inequality). Let u be a harmonic function
on a disc centred at the origin of radius ρ and let z be a point of distance
r away from the origin.

If u(z) ≥ 0 then

ρ− r
ρ+ r

u(0) ≤ u(z) ≤ ρ+ r

ρ− r
u(0).

Proof. Note that

ρ− r
ρ+ r

≤ ρ2 − r2

|ρeiθ − z|2
≤ ρ+ r

ρ− r
.
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Thus

|u(z)| ≤ 1

2π

ρ+ r

ρ− r

∫ 2π

0

|u(ρeiθ)| dθ.

If further u(ρeiθ) ≥ 0 then we can apply the first inequality as well to
obtain

1

2π

ρ− r
ρ+ r

∫ 2π

0

u dθ ≤ u(z) ≤ 1

2π

ρ+ r

ρ− r

∫ 2π

0

u dθ.

Now use the fact that the integral is equal to the value of u at the
origin. �

Theorem 14.4 (Harnack’s principle). Let un(z) be a harmonic func-
tion on a region Un. Suppose that U is a region such that every point
of U has a neighbourhood which is contained in all but finitely many
Un and that un(z) ≤ un+1(z) for all but finitely many n on the same
neighbourhood.

Then either un(z) tends uniformly to ∞ on compact subsets or it
tends to a harmonic function u(z), uniformly on compact subsets.

Proof. Suppose first that there is a z0 ∈ U such that un(z0) tends to
∞. Then we may find r > 0 and m such that the functions un, n > m
are non-decreasing for |z− z0| < r. Applying the left side of Harnack’s
inequality to u = un− um, we see that un tends uniformly to ∞ in the
disk |z − z0| ≤ r/2. Similarly if the limit at z0 is finite, then the right
side of Harnack’s inequality implies that un converges uniformly to a
finite number on the disk |z − z0| ≤ r/2.

Thus the set of points where un tends either to zero or to infinity are
both open. As U is connected one such set must be empty. If the limit
is infinite, uniformity follows by the usual compactness argument.

Now suppose that the limit is finite everywhere. Then

un+p(z)− un(z) ≤ 3(un+p(z0)− un(z0)) for |z − z0| ≤ r/2,

and n + p ≥ n ≥ m. Thus convergence at z0 implies uniform con-
vergence in a neighbourhood of z0. Thus we get that un tends to a
limit u uniformly on compact subsets. But u(z) must be harmonic by
Poisson’s formula. �

Note that Laplace’s equation in one variable reduces to requiring
that the second derivative is zero. In this case the solutions to Laplace’s
equation are the linear functions. A function on an interval, which is
less than the linear function with the same values at the endpoints of
the interval, is called convex. A subharmonic function is any function
of two variables with the same property. Any function which is less
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than a harmonic function with the same boundary values is called sub-
harmonic. Since this definition is a little unmanageable, we are lead
to:

Definition 14.5. A continuous function v(z) on a region U is said to
be subharmonic in U if for any harmonic function u defined on any
open subset U ′ ⊂ U the difference v−u satisfies the maximum principle
in U ′ (that is, if v − u has a maximum then it is constant).

Note that the condition that v is subharmonic is local in nature. In
fact if we say that v is subharmonic at z0 if it is subharmonic in a neigh-
bourhood of z0, then v is subharmonic if and only if it is subharmonic
at each point of U .

Note that a harmonic function is subharmonic. Note that if v is C2
and z0 is a maximum of v − u then the partials of v − u at z0 vanish
and the 2nd derivative is non-positive, so that ∆v = ∆(v − u) ≤ 0. In
fact this is enough to characterise subharmonic functions whose second
partials exist:

Lemma 14.6. Let v be a continuous function whose second partial
derivatives exist on U .

Then v is subharmonic if and only if ∆v ≥ 0 on U .

Proof. Exercise left to the reader. �

Note however that there are many subharmonic functions whose
derivatives do not exist.

Theorem 14.7. A continuous function v(z) is subharmonic if and only
if it satisfies the inequality

v(z0) ≤
1

2π

∫ 2π

0

v(z0 + reiθ) dθ,

for every disk |z − z0| ≤ r contained in U .

Proof. Suppose that v satisfies the inequality. Let u be a harmonic
function. Suppose that z0 is a maximum of v − u. Then v − u also
satisfies the inequality. Replacing v by v − u, we may suppose that z0
is a maximum of v. Suppose that the disk |z − z0| < r is contained
in U . If v(z) < v(z0) then the integral on the right must be less than
v(z0), since it is an average, a contradiction. Thus v is constant on the
boundary of the disk, whence it is constant on the disc, by varying the
radius r. But then v must be constant, so that v is subharmonic.

Now suppose that v is subharmonic. Let V be the restriction of v to
the boundary of the disk |z − z0| < r and let PV be the corresponding
Poisson integral. Then PV is harmonic so that v − PV satisfies the
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maximum principle on the disk. It is zero on the boundary of the disk,
so that

v ≤ PV
in the interior. �

Here are some basic properties of subharmonic functions:

Lemma 14.8. Suppose that v = v1 and v2 are subharmonic.
Then so is

(1) kv, for any constant k ≥ 0,
(2) v1 + v2,
(3) w = max(v2, v2), and
(4) the function v′ which is equal to v outside a disc and Pv inside

a disc.

Proof. (1) and (2) follow from (14.7).
Let u be any harmonic function such that w − u has a maximum at

z0. Replacing vi by vi − u we may assume that u = 0. Suppose that
w(z0) = v1(z0). Then

v1(z) ≤ w(z) ≤ w(z0) = v1(z0).

Thus v1(z) is constant. Now either w(z) = v1(z) in a neighbourhood of
z0 or w(z0) = v2(z0). But then v2(z) is also constant in a neighbourhood
of z0 and either way it follows that w(z) is constant in a neighbourhood
of z0. But then w(z) satisfies the maximum principle. Thus w is
subharmonic. This is (3).

Note that v′ is continuous since Pv is equal to v on the boundary of
the disk. On the other hand as Pv is a harmonic function, it is certainly
subharmonic. We can check that v′ is subharmonic at every point z0.
Suppose that z0 is a maximum of v′. If z0 belongs to the interior of the
disc we are done since Pv is subharmonic. If z0 belongs to the boundary
of the disc then z0 is a local maximum of v. But then v is constant and
so Pv is constant. Thus is (4). �
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