14. SUBHARMONIC FUNCTIONS
Definition 14.1. Let u: U — R be a continuous function. We say
that u satisfies the mean-value property if

I .
/ u(zo + re?) do,
0

u(zp) = py

whenever the disk |z — zo| < r is contained in U

Note that the mean-value property implies the maximum principle.
In fact it suffices that the mean-value property holds in a small ball
about every point of zg € U, whose radius depends on z.

Theorem 14.2. A continuous function u(z) on a domain U satisfies
the mean-value property if and only if it 1s harmonic.

Proof. If u is harmonic we have already seen that it must satisfy the
mean-value property.

Now suppose that u satisfies the mean-value property. Let v be
any harmonic function. Then the difference u — v also satisfies the
mean-value property. In particular the difference satisfies the maximum
principle.

Pick a ball contained in U for which u satisfies the mean-value prop-
erty. Let U be the restriction of u to the boundary of this ball and let
v = Py be the Poisson integral. Then v is a harmonic function which
agrees with v on the boundary of the ball. Thus the difference u — v
satisfies the mean-value property and is zero on the boundary. By the
maximum principle u — v is zero so that v = v is harmonic on the ball.
Thus v is harmonic. U

Using it is clear that we could have defined a function to be
harmonic if and only if it satisfies the mean-value property, so that
we can give a definition of harmonic which makes no reference to the
existence of partial derivatives.

Theorem 14.3 (Harnack’s inequality). Let u be a harmonic function
on a disc centred at the origin of radius p and let z be a point of distance

r away from the origin.
If u(z) > 0 then
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If further u(pe®®) > 0 then we can apply the first inequality as well to

obtain
1 - 2w 1 27
_r 7n/ ud@ﬁu(z)g—p+r/ udo.
2rp+1 Jo 2rp—1 J

Now use the fact that the integral is equal to the value of u at the
origin. 0

Theorem 14.4 (Harnack’s principle). Let u,(z) be a harmonic func-
tion on a region U,. Suppose that U is a region such that every point
of U has a neighbourhood which is contained in all but finitely many
U, and that u,(z) < u,11(2) for all but finitely many n on the same
neighbourhood.

Then either u,(z) tends uniformly to oo on compact subsets or it
tends to a harmonic function u(z), uniformly on compact subsets.

Proof. Suppose first that there is a zyp € U such that wu,(2o) tends to
o0o. Then we may find » > 0 and m such that the functions u,, n > m
are non-decreasing for |z — zy| < r. Applying the left side of Harnack’s
inequality to u = u,, — u,,, we see that u,, tends uniformly to oo in the
disk |z — 29| < r/2. Similarly if the limit at 2, is finite, then the right
side of Harnack’s inequality implies that u, converges uniformly to a
finite number on the disk |z — zo| < 7/2.

Thus the set of points where u,, tends either to zero or to infinity are
both open. As U is connected one such set must be empty. If the limit
is infinite, uniformity follows by the usual compactness argument.

Now suppose that the limit is finite everywhere. Then

Unip(2) = n(2) < Blunsp(z0) — wnlz0))  for |z —z| < 7/2,

and n +p > n > m. Thus convergence at z; implies uniform con-
vergence in a neighbourhood of z;. Thus we get that u, tends to a
limit % uniformly on compact subsets. But u(z) must be harmonic by
Poisson’s formula. 0

Note that Laplace’s equation in one variable reduces to requiring
that the second derivative is zero. In this case the solutions to Laplace’s
equation are the linear functions. A function on an interval, which is
less than the linear function with the same values at the endpoints of
the interval, is called convex. A subharmonic function is any function

of two variables with the same property. Any function which is less
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than a harmonic function with the same boundary values is called sub-
harmonic. Since this definition is a little unmanageable, we are lead
to:

Definition 14.5. A continuous function v(z) on a region U is said to
be subharmonic in U if for any harmonic function u defined on any
open subset U C U the difference v—u satisfies the maximum principle
in U’ (that is, if v —u has a mazimum then it is constant).

Note that the condition that v is subharmonic is local in nature. In
fact if we say that v is subharmonic at z if it is subharmonic in a neigh-
bourhood of 2y, then v is subharmonic if and only if it is subharmonic
at each point of U.

Note that a harmonic function is subharmonic. Note that if v is C?
and zg is a maximum of v — u then the partials of v — u at zg vanish
and the 2nd derivative is non-positive, so that Av = A(v —u) < 0. In
fact this is enough to characterise subharmonic functions whose second
partials exist:

Lemma 14.6. Let v be a continuous function whose second partial
derivatives exist on U.
Then v is subharmonic if and only if Av >0 on U.

Proof. Exercise left to the reader. O

Note however that there are many subharmonic functions whose
derivatives do not exist.

Theorem 14.7. A continuous function v(z) is subharmonic if and only
iof it satisfies the inequality

1 2m )
v(z) < 2—/ v(z + 1) db),
0

™

for every disk |z — zo| < 1 contained in U.

Proof. Suppose that v satisfies the inequality. Let u be a harmonic
function. Suppose that zp is a maximum of v — u. Then v — u also
satisfies the inequality. Replacing v by v — u, we may suppose that zj
is a maximum of v. Suppose that the disk |z — zy| < r is contained
in U. If v(z) < v(zp) then the integral on the right must be less than
v(zp), since it is an average, a contradiction. Thus v is constant on the
boundary of the disk, whence it is constant on the disc, by varying the
radius r. But then v must be constant, so that v is subharmonic.
Now suppose that v is subharmonic. Let V' be the restriction of v to
the boundary of the disk |z — 29| < r and let Py, be the corresponding

Poisson integral. Then Py is harmonic so that v — Py satisfies the
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maximum principle on the disk. It is zero on the boundary of the disk,
so that
v < PV

in the interior. U
Here are some basic properties of subharmonic functions:

Lemma 14.8. Suppose that v = vy and vy are subharmonic.
Then so is

(1) kv, for any constant k > 0,

(2) vy + v,

(3) w = max(vg,vy), and

(4) the function v' which is equal to v outside a disc and P, inside
a disc.

Proof. (1) and (2) follow from (14.7)).

Let u be any harmonic function such that w — u has a maximum at
zo. Replacing v; by v; — u we may assume that u = 0. Suppose that
w(zo) = v1(20). Then

v1(2) < w(z) < w(z) = v1(20).

Thus v (z) is constant. Now either w(z) = v1(2) in a neighbourhood of
zp or w(zg) = ve(2p). But then vy(2) is also constant in a neighbourhood
of zp and either way it follows that w(z) is constant in a neighbourhood
of zp. But then w(z) satisfies the maximum principle. Thus w is
subharmonic. This is (3).

Note that ¢’ is continuous since P, is equal to v on the boundary of
the disk. On the other hand as P, is a harmonic function, it is certainly
subharmonic. We can check that v’ is subharmonic at every point z.
Suppose that zj is a maximum of v'. If 2y belongs to the interior of the
disc we are done since P, is subharmonic. If z5 belongs to the boundary
of the disc then z; is a local maximum of v. But then v is constant and
so P, is constant. Thus is (4). O
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