16. Maps between manifolds

Definition 16.1. Let $f: X \longrightarrow Y$ be a continuous map of topological spaces. We say that f is a **local homeomorphism** if for every point $x \in X$ there is an open neighbourhood U of x such that V = f(U) is open and $f|_U: U \longrightarrow V$ is a homeomorphism.

We say that f is an **unramified cover** if for every point $y \in Y$ we may find an open neighbourhood V of y, such that the inverse image $f^{-1}(V)$ is a disjoint union of open subsets U such that $f|_U: U \longrightarrow V$ is a homeomorphism.

Every unramified cover is a local homeomorphism. However:

Example 16.2. *let* $Y = \mathbb{C}$ *and* $X = \mathbb{C}^* = \mathbb{C} - \{0\}$ *. Then the inclusion of* X *into* Y *is a local homeomorphism but it is not an unramified cover.*

We will need some basic theory of covering spaces.

Definition 16.3. Let $f: X \longrightarrow Y$ be a continuous map of topological spaces. Let Z be any topological space and let $g: Z \longrightarrow Y$ be any continuous map. A **lift** of g to X is a continuous map $h: Z \longrightarrow X$ such that $f \circ h = g$.

In general lifts need neither exist nor are they even unique:

Example 16.4. Let $f: X = \mathbb{C} - \{0\} \longrightarrow \mathbb{C} = Y$ be the natural inclusion. Then we cannot lift the identity map $g: Y \longrightarrow Y$ to X.

Example 16.5. Let X and Y be the spaces constructed in (13.2.2). Then there is a natural continuous map $f: Y \longrightarrow X$ (note that we have switched X and Y, both in terms of (13.2.2) and (16.1)). However the identity map $g: X \longrightarrow X$ is a continuous map which can be lifted in two different ways.

However non-uniqueness is quite pathological:

Lemma 16.6. Let $f: X \longrightarrow Y$ be a local homeomorphism of topological spaces. Let Z be a connected topological space and let $g: Z \longrightarrow Y$ be a continuous map. Let $h_i: Z \longrightarrow X$, i = 1, 2 be any two maps which lift g to X.

If X is Hausdorff and there is a point $z_0 \in Z$ such that $h_1(z_0) = h_2(z_0)$ then $h_1 = h_2$.

Proof. Let

$$E = \{ z \in Z \mid h_1(z) = h_2(z) \},\$$

be the set of points where h_1 and h_2 are equal. Then $z_0 \in E$ so that E is non-empty by assumption. As X is Hausdorff, the diagonal $\Delta \subset X \times X$ is closed. Now E is the inverse image of Δ by the continuous map $h_1 \times h_2 \colon Z \longrightarrow X \times X$, so that E is closed as X is Hausdorff.

Suppose that $z \in Z$. Let $x = h_i(z)$. Then we may find an open neighbourhood U of x and V = f(U) of y = f(x) = g(z), such that $f|_U: U \longrightarrow V$ is a homeomorphism. Since h_i are continuous, $W_i = h_i^{-1}(U)$ is open. Let $W = W_1 \cap W_2$. As

$$f \circ h_1 = g = f \circ h_2,$$

and $f|_U$ is injective, $W \subset E$. But then E is open and closed, so that E = Z as Z is connected.

Lemma 16.7. Let $f: X \longrightarrow Y$ be an unramified cover of manifolds. Let $\gamma: [0,1] \longrightarrow Y$ be a path and suppose $x \in X$ is point of X such that $f(x) = y = \gamma(0)$.

Then γ has a unique lift to a map

$$\psi \colon [0,1] \longrightarrow X,$$

such that $\psi(0) = x$.

Proof. For every point y of the image of γ , we may find a connected open neighbourhood $V = V_y \subset Y$ of y such that $f^{-1}(V)$ is a disjoint union of open subsets all of which are homeomorphic to V via f. Since the image of γ is compact, we may cover the image by finitely many of these open subsets V_1, V_2, \ldots, V_k . Let $W_j \subset [0, 1]$ be the inverse image of V_j , and let

$$I_j = \bigcup_{i \le j} W_i.$$

Then I_j is an open subset of [0, 1] which is an interval containing 0. We define $\psi_j \colon I_j \longrightarrow X$ by induction on j. Suppose that we have defined $\psi_k, k \leq j$. Pick $t \in W_j \cap W_j \subset I_i \cap W_{j+1}$. Let $x' = \psi_j(t) \in X$ (if j = 0 then we take x' = x). Pick $U \subset X$ containing x' such that U is a connected component of $f^{-1}(V_{j+1})$ which maps homeomorphically down to V_{j+1} . Then we may clearly extend ψ_j to ψ_{j+1} . Uniqueness follows from (16.6).

Definition 16.8. Let $f: X \longrightarrow Y$ be a local homeomorphism. We say that f has the **lifting property** if given any continuous map $\gamma: [0,1] \longrightarrow Y$ and a point $x \in X$ such that $f(x) = y = \gamma(0)$, then we may lift γ to $\psi: [0,1] \longrightarrow X$ such that $\psi(0) = x$.

Theorem 16.9. Let $f: X \longrightarrow Y$ be a local homeomorphism of manifolds.

Then f has the lifting property if and only if f is an unramified cover.

We have already shown one direction of (16.9). To prove the other direction we need the following basic result:

Theorem 16.10. Let $f: X \longrightarrow Y$ be a local homeomorphism of manifolds. Suppose that we have a homotopy $G: [0,1] \times [0,1] \longrightarrow Y$ between γ_0 and γ_1 . Suppose also that we can lift $\gamma_s: [0,1] \longrightarrow Y$, defined by $\gamma_s(t) = \gamma(s,t)$ to $\psi_s: [0,1] \longrightarrow X$.

If the function $\sigma \colon [0,1] \longrightarrow X$ given by $\sigma(s) = \psi_s(0)$ is continuous then we can lift G to a continuous map $H \colon [0,1] \times [0,1] \longrightarrow X$.

Proof. The definition of

$$H\colon [0,1]\times [0,1] \longrightarrow X,$$

is clear; given $(s,t) \in [0,1]^2$, $H(s,t) = \psi_s(t)$. The only thing we need to check is that H is continuous. Note that $\sigma(s) = H(s,0)$.

Given $(s,t) \in [0,1]^2$, let x = H(s,t). Since f is a local homeomorphism, we may find an open subset $U = U_{s,t}$ such that V = f(U) is open and $f|_U: U \longrightarrow V$ is a homeomorphism. Let $W = G^{-1}(V)$. Then $W = W_{s,t}$ is an open neighbourhood of (s,t), such that $H(s,t) \in U$ and G(W) = V. By compactness of $[0,1]^2$, we may find a finite subcover.

It follows that we may subdivide $[0, 1]^2$ into finitely many squares in such a way that each square is mapped by G into an open subset Vof Y such that there is an open subset U of X with the property that $f|_U: U \longrightarrow V$ is a homeomorphism and there is a point (s, t) belonging to the square such that $H(s, t) \in U$.

Suppose that the subdivision is given by k, so that we subdivide each [0, 1] into the intervals [i/k, (i + 1)/k]. By an obvious induction, it suffices to prove that

$$H|_{[i/k,(i+1)/k]\times[j/k,(j+1)/k]},$$

is continuous, given that $\sigma(t) = H(i/k, t)$ is continuous. Replacing the square

$$[i/k, (i+1)/k] \times [j/k, (j+1)/k],$$

by $[0, 1]^2$ and Y by V, we are reduced to proving that H is continuous, given that there is an open subset U of X which maps homeomorphically down to Y and such that there is a single point $(s_0, t_0) \in [0, 1]^2$ such that $H(s_0, t_0) \in U$.

Since $f|_U: U \longrightarrow Y$ is a homeomorphism, we may lift γ_{s_0} to a map $\psi_0: [0,1] \longrightarrow U$. By uniqueness it follows that $H(s_0,t) \in U$ for all $t \in [0,1]$. By uniqueness of the lift of γ , where $\gamma(t) = G(0,t), H(0,t) \in U$

for all $t \in [0,1]$. Finally by uniqueness of the lift of $\gamma_s(t)$, it follows that $H(s,t) \in U$ for all $(s,t) \in [0,1]^2$. But then $G = (f|_U)^{-1} \circ H$ is certainly continuous.

To prove (16.9), we start with a seemingly special case:

Proposition 16.11. Let $f: X \longrightarrow Y$ be a local homeomorphism of connected manifolds.

If f has the lifting property and Y is simply connected then f is an isomorphism.

Proof. Pick $a \in X$ and let $b = f(a) \in Y$.

Pick $y \in Y$. Since Y is a connected manifold it is path connected. Pick a path $\gamma: [0,1] \longrightarrow Y$ such that $b = \gamma(0)$ and $y = \gamma(1)$. Let $\psi: [0,1] \longrightarrow X$ be a lifting of γ and let $x = \psi(1)$. Then f(x) = y. Thus f is surjective.

Suppose that $x_0, x_1 \in X$, with $y = f(x_0) = f(x_1)$. Pick paths $\psi_i: [0,1] \longrightarrow X$ such that $a = \psi_i(0)$ and $x_i = \psi_i(1)$. Let $\gamma_i = f \circ \psi_i$. As Y is simply connected, we may pick a homotopy G between ψ_0 and ψ_1 fixing y. By (16.10) we may lift G to a continuous function H, such that H(0,0) = x. Since the function $\psi(t) = G(0,t)$ is continuous, the composition $f \circ \psi$ is constant (equal to y) and the fibre $f^{-1}(y)$ is discrete, it follows that G(0,t) = x is constant. But then $x_1 = G(0,1) = G(0,0) = x_0$. Thus f is injective.

As f is a local homeomorphism, it follows that f is a homeomorphism. \Box

Proof of (16.9). Suppose that f has the lifting property.

Pick $y \in Y$ and let V be a simply connected neighbourhood of y. Let U be a connected component of the inverse image. Then $f|_U : U \longrightarrow V$ has the lifting property and by (16.11) it is a homeomorphism. \Box