
17. Maps between Riemann surfaces: I

Definition 17.1. We say that f : X −→ Y is a ramified cover of
surfaces if X and Y are surfaces and there is a discrete set of points in
X, whose images in Y are also discrete, such that the removal of these
points in X and Y makes f an unramified cover. The set of points in
X where f is not is not locally an unramified cover is called the set of
ramification points. The image of the ramification points in Y is
called the set of branch points.

Note that a ramified cover is not a local homeomorphism about any
of the ramification points. Note also that the inverse image of a branch
point need not be a ramification point.

Example 17.2. Let f : X = C −→ Y = C be the map z −→ z2. Then
f is a ramified cover. The set of ramification points is equal to the
set {0} ⊂ X and the set of branch points is equal to the set {0} ⊂ Y .
The same is true for any of the maps z −→ zn, n ≥ 1. The map
f : C −→ C∗ given by z −→ ez is also an unramified cover. In fact f
is the universal cover of C∗.

Definition 17.3. Let f : X −→ Y be a map of topological spaces. We
say that f is closed (respectively open) if the image of every closed
(respectively open) subset is closed (respectively open).

Lemma 17.4. Suppose that f : X −→ Y is a continuous map of Haus-
dorff topological spaces and that X is compact.

Then f is closed.

Proof. As X is compact Hausdorff F ⊂ X is closed if and only if it
is compact. But the image of every compact subset is compact and a
compact subset of a Hausdorff space is closed. �

Lemma 17.5. Let f : X −→ Y be a continuous and closed map of
metric spaces, which is a local homeomorphism.

If x1, x2, . . . is a Cauchy sequence of points of X whose images y1, y2, . . .
converge to a point y ∈ Y then x1, x2, . . . converge to a point x ∈ X
such that f(x) = y.

Proof. If these points do not have a limit, then the set

{xi | i ∈ N },
is closed. But then its image

{ yi | i ∈ N },
is closed, which contradicts the fact that y is a point of the closure. �
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Theorem 17.6. Let f : X −→ Y be a continuous map of topological
surfaces. Suppose that

• f is closed, and
• there is a discrete set of points in X, such that f is a local

homeomorphism outside this set.

Then f is a ramified cover.

Proof. As f is closed the image of a discrete set of points is discrete.
Since this result is local about Y , we may assume that Y is the open
unit ball in C, and that if f is not a local homeomorphism then the
inverse image of 0 is one point, which is the unique point where f
is not a local homeomorphism. Let X ′ = X and Y ′ = Y if f is
there is no point where f is not a local homeomorphism; otherwise let
X ′ = X − {f−1(0)} and Y ′ = Y − {0}.

For the first statement, it suffices to prove that g = f |X′ : X ′ −→ Y ′

is an unramified cover. By (16.9), it suffices to prove that g satisfies
the lifting property. Let γ : [0, 1] −→ Y ′ be a continuous map and let
x ∈ X ′ be a point such that f(x) = y = γ(0). Let

E = { s ∈ [0, 1] |we may lift γ|[0,s] to ψ : [0, s] −→ X, with ψ(0) = x }.
Note that E is non-empty, since it contains 0, and that E is an interval.
As in the proof of (16.7), E is open. Suppose that E = [0, s) is not
closed. Pick a sequence of real numbers s1, s2, . . . tending to s such that
we may lift γ|[0,si] to ψi : [0, si] −→ X. Let xi = ψi(si) and y′ = γ(s).
Then the points yi = f(xi) converge to y′, so that by (17.5) the points
xi converge to x′ a point of X such that f(x′) = y′. But then we may
lift γ|[0,s] to ψ : [0, s] −→ X by defining

ψ(t) =

{
ψi(t) if t < si

x if t = s,

a contradiction. Thus E = [0, 1]. �

Corollary 17.7. Let f : X −→ Y be a holomorphic map between Rie-
mann surfaces, which is not locally constant.

If f is closed then f is a ramified cover. In particular if X is a com-
pact connected Riemann surface then every non-constant holomorphic
map from X to any other Riemann surface is a ramified cover.

Proof. Note that given a point x ∈ X it makes sense to talk about the
derivative of f being zero at x. Indeed just pick a coordinate chart and
consider the derivative between the corresponding open subsets of C;
the key point is that this is independent of the chart we pick, even if
the value of the derivative is not.

2



Let x ∈ X be a point of f where the derivative of f is not zero. Then
f is locally injective and so f is a local homeomorphism about x ∈ X
by the open mapping theorem (indeed these statements are all local,
in which case we are reduced to the classical case when X and Y are
open subsets of C).

On the other hand, the set of points where the derivative of f is zero
is discrete, since this is true for any non-zero holomorphic map between
open subsets of C. Thus the result follows by (17.6). �

The really interesting fact is that the converse result is also true:

Theorem 17.8. Let f : X −→ Y be a ramified cover.
If Y is a Riemann surface, then there is a unique choice of a Riemann

surface structure on X such that f becomes holomorphic.

(17.8) is a special case of Riemann’s existence theorem. We only
sketch the proof. Define an altas on X by taking all charts h1 : U −→
U ′ ⊂ C such that the map h2◦f ◦h−11 : U ′′ −→ V ′ is holomorphic, where
h2 : V −→ V ′ ⊂ C is any chart on Y and U ′′ = (f ◦ h−1)−1(V ) ⊂ U .
As long as this does give a holomorphic structure, uniqueness is clear
since this atlas is maximal.

The key point is to check what happens at ramification points. Topo-
logically we have a map between unit discs, which is an unramified cover
of the punctured disc. The set of such maps is classified by the map
on fundamental groups,

Z ' π1(X − x, x0) −→ π1(Y − y, y0) ' Z.
The only invariant of this map is the cokernel, which is a finite cyclic
group,

Z
nZ

,

for a unique positive integer n. But the map z −→ zn has exactly
this cokernel and this map is holomorphic. The number n is called the
ramification index.

Note that this gives a way to construct very many Riemann surfaces
X, since it is easy to write down lots of ramified covers between a
compact oriented surface of genus g and P1.
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