
18. Maps between Riemann surfaces: II

Note that there is one further way we can reverse all of this. Suppose
that X instead of Y is a Riemann surface. Can we put a Riemann
surface structure on Y such that f is holomorphic? Well there is one
trivially necessary condition.

Definition 18.1. Let f : X −→ Y be an unramified cover of topolog-
ical spaces or a ramified cover of surfaces. A deck transformation
g : X −→ X is any continuous map over Y , that is, such that f = f ◦g.

Note that the set of all deck transformations forms a group, called
the group of deck transformations.

Note that any map over Y permutes the fibres of f . Thus a deck
transformation permutes, at least locally, the decks of f . Now if f is a
holomorphic map of Riemann surfaces, then any deck transformation is
holomorphic. Thus a trivially necessary condition to put a structure of
Riemann surface on Y is that any deck transformation is holomorphic.
This trivially necessary condition is in fact sufficient in a large number
of examples.

Definition 18.2. Let X be a topological space and let G ⊂ Aut(X) be
a subgroup of the automorphism group. We say that the action of G on
X is properly discontinuous if for every two compact subsets A and
B of X the number of automorphisms φ ∈ G such that φ(A) intersects
B is non-empty is finite.

Theorem 18.3. Let X be a Riemann surface. Let G ⊂ Aut(X) be
a subgroup of the automorphism group of X, whose action on X is
properly discontinuous.

Then the quotient topological space f : X −→ Y = X/G is naturally
a Riemann surface, in such a way that f is holomorphic.

We prove this in a sequence of steps:

Lemma 18.4. Let X be a topological space, let G be a subgroup of the
group of automorphisms of X and let f : X −→ Y = X/G the quotient
of X modulo G.

Then f is open.

Proof. Pick U ∈ X and let V = f(U). We have to show that f−1(V )
is open. But φ(U) is open for any φ ∈ G and

f−1(V ) =
⋃
φ∈G

φ(U). �
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Lemma 18.5. Let X be a locally compact Hausdorff topological space
and let G ⊂ Aut(X) be a subgroup of the automorphism group, whose
action on X is properly discontinuous.

Then the quotient f : X −→ Y = X/G is Hausdorff and f is closed.

Proof. Let y1 6= y2 be two distinct points of Y . Pick xi ∈ X such
that f(xi) = yi, i = 1 and 2. Pick a compact neighbourhood of x2.
Then there are only finitely many elements of G such that φ(x1) is in
this neighbourhood. So we may find a compact neighbourhood A2 of
x2 such that φ(x1) /∈ A2 for any φ ∈ G. Similarly we may then find a
compact neighbourhood A1 of x1 such that φ(A1)∩A2 is always empty.
But then f(A1) and f(A2) are disjoint neighbourhoods of y1 and y2.

Now let F ⊂ X be a closed subset and let H = f(F ). We have to
show that f−1(H) is closed. Now φ(F ) is closed for all φ ∈ G and

f−1(H) =
⋃
φ∈G

φ(F ).

Since the action is properly disontinuous, this union is closed. �

Lemma 18.6. Let X be a manifold and let G ⊂ Aut(X) be a subgroup
of the automorphism group, whose action is properly discontinuous such
that if we can find φ ∈ G and x ∈ X with φ(x) = x then φ is the
identity.

Then f : X −→ Y = X/G is an unramified cover of manifolds.

Proof. As in the proof of (18.5), it is clear that f is a local homeo-
morphism. Since f is closed as well, it is easy to check that the lifting
property holds. But then f is an unramified cover. �

Lemma 18.7. Let X be a surface and let G ⊂ Aut(X) be a subgroup
of the automorphism group, whose action is properly discontinuous.

Then f : X −→ Y = X/G is a ramified cover of surfaces.

Proof. Let R be the set of points x ∈ X where there is an element
φ ∈ G, not equal to the identity, such that φ(x) = x. Since the action
of G is properly discontinuous R is a discrete subset, whose image
B = f(R) is also discrete.

Let U = X−R and V = Y −B. Then G acts on U and the quotient
is V , so that the result follows by (18.6). �

Proof of (18.3). By (18.7) we have a ramified cover of topological sur-
faces. Pick an open cover of X, which has the property that every
ramification point is only contained in one open subset. Then we may
choose a coordinate chart about every branch point such that the map
is locally given by z −→ zn about a ramification point.
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Now suppose that y ∈ Y is not a branch point. Pick an open neigh-
bourhood V of y such that f−1(V ) is a disjoint union of open subsets
U such that f |U : U −→ V is a homeomorphism. Possibly shrinking V ,
we may assume that U is part of an atlas and this defines an atlas on
V .

Since the deck transformations are holomorphic, and the branch
point belong to only one chart, this atlas on Y has holomorphic tran-
sition functions. This makes Y into a Riemann surface and f into a
holomorphic map. �

Definition 18.8. Let Y be a connected topological space. A continuous
map f : X −→ Y is called the universal cover of Y if X is simply
connected and f is an unramified cover.

As the name might suggest the universal cover comes with a uni-
versal property. Suppose that f : X −→ Y is the universal cover. If
g : Z −→ Y is an unramified cover then there is a unique continuous
map h : X −→ Y such that f = g ◦ h. In particular h is an unramified
cover. By virtue of the universal property, the universal cover is unique
up to unique isomorphism.

Suppose that we pick a point b ∈ Y . Pick a point a ∈ X over b.
Then we may lift any path γ : [0, 1] −→ Y starting at b to a path
ψ : [0, 1] −→ X. If y = γ(1) then note that x = ψ(1) belongs to
the fibre over y ∈ Y . Suppose that γ′ ∼ γ is homotopic to γ, where
γ′(0) = b and γ′(1) = y. Let ψ′ be the lift of γ′. Since we can lift
homotopies, it follows that ψ′ ∼ ψ and so ψ′(1) = x. Thus the point x
only depends on the homotopy class of γ.

Conversely given any point x of the fibre over y, then we may find
a path ψ connecting a to x. The composition of ψ with f gives a
path γ connecting a to y. If ψ′ is another path in X with endpoint
x, then we may find a homotopy in X between ψ and ψ′, as X is
simply connected. If γ′ is the composition of ψ′ and f , it follows that
γ and γ′ are homotopic. Thus the points of X are in bijection with
the homotopy classes of paths starting at b (so that this gives a way to
construct X).

Now suppose that pick an element φ ∈ G = π1(Y, b). Then γ′ = γ ·φ
is another path in Y connecting b to y. Lifting γ and γ′ to paths ψ and
ψ′ with endpoints x and x′ this defines an action

X ×G −→ X by the rule x −→ x · g

In fact this action is faithful and actually realises X as a G-bundle over
Y (i.e locally over Y , X ' Y ×G and this homeomorphism respects the
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action). Put differently Y = X/G. The intermediate covers g : Z −→
Y are then given by subgroups H of G, where Z = X/H.

Putting all of the material together in the previous two sections, we
get:

Theorem 18.9. Let Y be a Riemann surface.
Then Y ' X/G, where X is a simply connected Riemann surface

and G is a group of automorphisms of X which acts on X properly dis-
continuously, such that the quotient map f : X −→ Y is an unramified
cover.

Proof. Let f : X −→ Y be the universal cover of Y . Then f is contin-
uous, Y = X/G, where G ' π1(X, x) acts on X properly discontinu-
ously. Note that G is the group of deck transformations of f .

We may make X into a Riemann surface in such a way that f is
holomorphic. But then every element of X is then biholomorphic, so
that Y is the quotient Riemann surface. �

Example 18.10. Let Λ ⊂ C be a lattice. That is Λ ' Z2 as groups
and the span of Λ over R is the whole of C. Then the quotient

E =
C
Λ
,

is a Riemann surface, which is known as an elliptic curve. In fact
the quotient is homeomorphic to S1×S1, so that E is an example of a
compact Riemann surface.

In fact the topological classification of connected, compact oriented
surfaces is easy. Given any oriented surface S, one can construct an-
other by adding a handle. The compact oriented surfaces are then
classified by the number of handles g one adds to S2. In terms of the
universal cover there are then three possibilities. If g = 0, then S ' S2.
As S2 is simply connected, it is its own universal cover. If g = 1 then
S ' S1 × S1. Since the universal cover of S1 is R and since the uni-
versal cover of a product is the product of the universal covers (by the
universal property of the universal cover and the product) it follows
that S1 × S1 has universal cover R2 ' C. Finally the same holds for
higher genus (although perhaps it is better to say that the universal
cover is the disc).

It is therefore interesting to classify all simply connected Riemann
surfaces:

Theorem 18.11. Let X be a simply connected Riemann surface. Then
X is biholomorphic to one of

(1) P1

4



(2) C, and
(3) the unit disc ∆.

Note that these three Riemann surfaces are not isomorphic to each
other. Note also that we have a complete classification of the automor-
phism group in each case:

(1) Aut(P1) = PGL(2), the group of Möbius transformations

z −→ az + b

cz + d
.

(2) Aut(C) is the subgroup of the Möbius transformations which
fix ∞,

z −→ az + b.

(3) Finally Aut(∆) is also given by a subgroup of the Möbius trans-
formations. Every automorphism has the form

z −→ eiθ
z − a
1− āz

,

where a ∈ ∆ and θ ∈ [0, 2π).
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