2. The Gamma function

The zeroes of the function $\sin \pi z$ are the integers and it is the simplest function with this property. How about holomorphic functions whose zeroes are the positive (or negative) integers? The simplest choice of such a function is given by the canonical product:

$$
G(z)=\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}
$$

Obviously $G(z)$ is zero at all of the negative integers. As usual we throw in the exponential term to induce convergence.

On the other hand $G(-z)$ has zeroes at all of the positive integers. It follows that the ratio between the product $z G(z) G(-z)$ and $\sin \pi z$ is a function with no zeroes nor poles, so that it is the exponential of a function. In fact we showed in 220A, Lecture 24 that

$$
\sin \pi z=\pi z \prod_{n \neq 0}\left(1-\frac{z}{n}\right) e^{z / n} .
$$

Thus

$$
z G(z) G(-z)=\frac{\sin \pi z}{\pi}
$$

Since the construction of $G(z)$ is so simple, we expect it to have some interesting properties. Note that $G(z-1)$ has the same zeroes as $G(z)$ as well as a zero at 0 . So we can write

$$
G(z-1)=z e^{\gamma(z)} G(z)
$$

for some entire function $\gamma(z)$. To determine $\gamma(z)$ take the logarithmic derivative of both sides:

$$
\sum_{n=1}^{\infty}\left(\frac{1}{z-1+n}-\frac{1}{n}\right)=\frac{1}{z}+\gamma^{\prime}(z)+\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right)
$$

Let's take the LHS and replace n by $n+1$:

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{1}{z-1+n}-\frac{1}{n}\right) & =\frac{1}{z}-1+\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n+1}\right) \\
& =\frac{1}{z}-1+\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right)
\end{aligned}
$$

The last series sums to 1 and so $\gamma^{\prime}(z)=0$. It follows that $\gamma(z)$ is a constant. Let's denote this constant by γ, so that

$$
G(z-1)=z e^{\gamma} G(z)
$$

To determine the constant γ, plug in $z=1$:

$$
1=G(0)=e^{\gamma} G(1)
$$

Therefore

$$
e^{-\gamma}=\prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right) e^{-1 / n}
$$

Now the nth partial product is

$$
(n+1) e^{-(1+1 / 2+1 / 3+\cdots+1 / n)}
$$

and so

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n\right)
$$

The constant γ is called Euler's constant.

$$
\gamma \approx .57722
$$

If we set $H(z)=G(z) e^{\gamma z}$ then

$$
H(z-1)=z H(z)
$$

Thus

$$
\Gamma(z)=\frac{1}{z H(z)}
$$

satisfies

$$
\Gamma(z-1)=\frac{\Gamma(z)}{z-1}
$$

or better

$$
\Gamma(z+1)=z \Gamma(z)
$$

Γ is called Euler's gamma function.
We have

$$
\Gamma(z)=\frac{e^{-\gamma z}}{z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}
$$

Note that

$$
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}
$$

$\Gamma(z)$ is a meromorphic function with poles at $z=0,-1,-2, \ldots$, and no zeroes.

Note that $\Gamma(1)=1, \Gamma(2)=1 \Gamma(1)=1, \Gamma(3)=2 \Gamma(2)=2, \Gamma(4)=$ $3 \Gamma(2)=6$ and in general $\Gamma(n)=(n-1)$!. We can also see that

$$
\Gamma(1 / 2)=\sqrt{\pi}
$$

To go further, it is useful to write down the second logarithmic derivative:

$$
\frac{d}{d z}\left(\frac{\Gamma^{\prime}(z)}{\Gamma(z)}\right)=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}}
$$

For example

$$
\Gamma(z) \Gamma(z+1 / 2) \quad \text { and } \quad \Gamma(2 z)
$$

have the same poles. We have

$$
\begin{aligned}
\frac{d}{d z}\left(\frac{\Gamma^{\prime}(z)}{\Gamma(z)}\right)+\frac{d}{d z}\left(\frac{\Gamma^{\prime}(z+1 / 2)}{\Gamma(z+1 / 2)}\right) & =\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}}+\sum_{n=0}^{\infty} \frac{1}{(z+n+1 / 2)^{2}} \\
& =4\left[\sum_{n=0}^{\infty} \frac{1}{(2 z+2 n)^{2}}+\sum_{n=0}^{\infty} \frac{1}{(2 z+2 n+1)^{2}}\right] \\
& =4 \sum_{m=0}^{\infty} \frac{1}{(2 z+m)^{2}} \\
& =2 \frac{d}{d z}\left(\frac{\Gamma^{\prime}(2 z)}{\Gamma(2 z)}\right) .
\end{aligned}
$$

If we integrate then we get

$$
\Gamma(z) \Gamma(z+1 / 2)=e^{a z+b} \Gamma(2 z),
$$

where a and b are constants to be determined. Substituting $z=1 / 2$ and $z=1$ we make use of the known values
$\Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(1)=1, \quad \Gamma(3 / 2)=\frac{1}{2} \sqrt{\pi}, \quad$ and $\quad \Gamma(2)=1$.
This gives

$$
\begin{aligned}
a / 2+b & =1 / 2 \log \pi \\
a+b & =1 / 2 \log \pi-\log 2 .
\end{aligned}
$$

It follows that

$$
a=-2 \log 2 \quad \text { and } \quad b=1 / 2 \log \pi+\log 2 .
$$

Putting all of this together we get

$$
\sqrt{\pi} \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma(z+1 / 2)
$$

This is known as Legendre's (duplication) formula.

