
3. Harmonic functions

Recall:

Definition 3.1. Let U ⊂ C be a region.
We say that u : U −→ R is harmonic, if it is C2 and

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0.

The set of Harmonic functions is a vector space. The simplest har-
monic functions are linear functions ax + by + c, where a, b and c are
real.

Suppose that we introduce polar coordinates (r, θ). Then we get the
equation

r
∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂θ2
= 0.

It follows that log r is a harmonic function and any harmonic function
which only depends on r must be of the form a log r + b.

Recall that if u is harmonic then u is locally the real part of a
holomorphic function. The imaginary part v is called the harmonic
conjugate. Unfortunately the harmonic conjugate is not unique, nor
is it necessarily globally defined. Consider for example U = C∗ and
u = log r.

If u is harmonic, then

f(z) =
∂u

∂x
− i∂u

∂y
,

is holomorphic. If we put

U =
∂u

∂x
and V = −∂u

∂y
,

then

∂U

∂x
=
∂2u

∂x2
= −∂

2u

∂y2
=
∂V

∂y

∂U

∂y
=

∂2u

∂x∂y
= −∂V

∂x
.

In fact we can put this in the form of differentials

f dz =

(
∂u

∂x
dx+

∂u

∂y
dy

)
+ i

(
−∂u
∂y

dx+
∂u

∂x
dy

)
.

Note that in this expression the real part is the differential of u,

du =
∂u

∂x
dx+

∂u

∂y
dy.
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Suppose that v is the harmonic conjugate of u. Then the imaginary
part can be written as

dv =
∂v

∂x
dx+

∂v

∂y
dy = −∂u

∂y
dx+

∂u

∂x
dy.

However the harmonic conjugate need not exist and even if it does it
is not unique. For this reason we write

∗du = −∂u
∂y

dx+
∂u

∂x
dy,

which we call the conjugate differential of u. Thus

f dz = du+ i ∗du.

Now the integral of f dz around any cycle homologous to zero, van-
ishes, by the general form of Cauchy’s Theorem. The integral of du
around any cycle is zero, as du is exact. Thus∫

γ

∗du =

∫
γ

−∂u
∂y

dx+
∂u

∂x
dy = 0,

for any cycle homologous to zero. There is an interesting generalisation
of this result to pairs of harmonic functions u1 and u2:

Theorem 3.2. If u1 and u2 are harmonic in a region U then∫
γ

u1 ∗du2 − u2 ∗du1 = 0,

for every cycle homologous to zero.

Proof. It suffices to prove this is in the very special case when γ = ∂R
is the boundary of a rectangle. In R we may find conjugate harmonic
functions v1 and v2. In this case

u1 ∗du2 − u2 ∗du1 = u1 dv2 − u2 dv1 = u1 dv2 + v1 du2 − d(u2v1).

Now d(u2v1) is an exact differential and u1 dv2+v1 du2 is the imaginary
part of

(u1 + iv1) d(u2 + iv2).

Integrating an exact differential over γ is zero. On the other hand

(u1 + iv1) d(u2 + iv2) = F (z)f(z) dz

for appropriate holomorphic functions F (z) and f(z), so that integrat-
ing the product above is zero, since the product of two holomorphic
functions is holomorphic. �
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Theorem 3.3. If u is harmonic in the annulus ρ1 < |z| < ρ2 then
there are constants α and β such that

1

2π

∫
|z|=r

u dθ = α log r + β.

If further u is harmonic in the whole disc, then α = 0, so that the
integral is constant.

Proof. We apply (3.2) with u1 = log r and u2 = u. Let γ be the
cycle obtained by describing the two circles |z| = ri in the opposite
orientation, where ρ1 < r1 < r2 < ρ2. Then γ is homologous to zero,
so that ∫

γ

u1 ∗du2 − u2 ∗du1 = 0.

Now

∗du = r
∂u

∂r
dθ,

on the circle |z| = r, so that we have

log r1

∫
|z|=r1

r1
∂u

∂r
dθ −

∫
|z|=r1

u dθ = log r2

∫
|z|=r2

r2
∂u

∂r
dθ −

∫
|z|=r2

u dθ.

It follows that the expression∫
|z|=r

u dθ − log r

∫
|z|=r

r
∂u

∂r
dθ,

is independent of r, in the annulus. On the other hand, since∫
γ

∗du = 0

if we run the same argument then we see that∫
|z|=r

r
∂u

∂r
dθ,

is also constant in the annulus. �

Corollary 3.4. Let u be a harmonic function on U .
Then

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ,

for any z0 ∈ U , where r is sufficiently small.

Proof. Apply (3.2) to a circle centred at z0, sufficiently small so that it
is contained in U . In this case α = 0 and β is the value of u at z0. �
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Corollary 3.5 (Maximum principle). A nonconstant harmonic func-
tion has neither a maximum nor a minimum in its region of definition.
Thus the maximum and the minimum of a harmonic function on a
compact set E are achieved on the boundary.

Note that the maximum principle has an interesting consequence. A
continuous function u on a closed set, which is harmonic on the interior,
is determined by its values on the boundary.

Indeed suppose that u1 and u2 are two continuous functions on E,
which are harmonic on the interior and which agree on the boundary.
Then u1 − u2 is a harmonic function which is zero on the boundary.
On the other hand, the maximum and minimum value is taken on the
boundary, so that the maximum and minimum of u1 − u2 is zero. But
then u1 = u2.
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