3. HARMONIC FUNCTIONS

Recall:

Definition 3.1. Let $U \subset \mathbb{C}$ be a region. We say that $u: U \longrightarrow \mathbb{R}$ is **harmonic**, if it is C^2 and

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

The set of Harmonic functions is a vector space. The simplest harmonic functions are linear functions ax + by + c, where a, b and c are real.

Suppose that we introduce polar coordinates (r, θ) . Then we get the equation

$$r\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{\partial^2 u}{\partial \theta^2} = 0.$$

It follows that $\log r$ is a harmonic function and any harmonic function which only depends on r must be of the form $a \log r + b$.

Recall that if u is harmonic then u is locally the real part of a holomorphic function. The imaginary part v is called the harmonic conjugate. Unfortunately the harmonic conjugate is not unique, nor is it necessarily globally defined. Consider for example $U = \mathbb{C}^*$ and $u = \log r$.

If u is harmonic, then

$$f(z) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y},$$

is holomorphic. If we put

$$U = \frac{\partial u}{\partial x}$$
 and $V = -\frac{\partial u}{\partial y}$,

then

$$\frac{\partial U}{\partial x} = \frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2} = \frac{\partial V}{\partial y}$$
$$\frac{\partial U}{\partial y} = \frac{\partial^2 u}{\partial x \partial y} = -\frac{\partial V}{\partial x}.$$

In fact we can put this in the form of differentials

$$f \, \mathrm{d}z = \left(\frac{\partial u}{\partial x} \, \mathrm{d}x + \frac{\partial u}{\partial y} \, \mathrm{d}y\right) + i \left(-\frac{\partial u}{\partial y} \, \mathrm{d}x + \frac{\partial u}{\partial x} \, \mathrm{d}y\right).$$

Note that in this expression the real part is the differential of u,

$$\mathrm{d}u = \frac{\partial u}{\partial x}\,\mathrm{d}x + \frac{\partial u}{\partial y}\,\mathrm{d}y.$$

Suppose that v is the harmonic conjugate of u. Then the imaginary part can be written as

$$\mathrm{d}v = \frac{\partial v}{\partial x}\,\mathrm{d}x + \frac{\partial v}{\partial y}\,\mathrm{d}y = -\frac{\partial u}{\partial y}\mathrm{d}x + \frac{\partial u}{\partial x}\mathrm{d}y$$

However the harmonic conjugate need not exist and even if it does it is not unique. For this reason we write

$$*\mathrm{d}u = -\frac{\partial u}{\partial y}\,\mathrm{d}x + \frac{\partial u}{\partial x}\,\mathrm{d}y,$$

which we call the **conjugate differential** of u. Thus

$$f \, \mathrm{d}z = \mathrm{d}u + i \ast \mathrm{d}u.$$

Now the integral of f dz around any cycle homologous to zero, vanishes, by the general form of Cauchy's Theorem. The integral of duaround any cycle is zero, as du is exact. Thus

$$\int_{\gamma} * \mathrm{d}u = \int_{\gamma} -\frac{\partial u}{\partial y} \,\mathrm{d}x + \frac{\partial u}{\partial x} \,\mathrm{d}y = 0,$$

for any cycle homologous to zero. There is an interesting generalisation of this result to pairs of harmonic functions u_1 and u_2 :

Theorem 3.2. If u_1 and u_2 are harmonic in a region U then

$$\int_{\gamma} u_1 \ast \mathrm{d} u_2 - u_2 \ast \mathrm{d} u_1 = 0,$$

for every cycle homologous to zero.

Proof. It suffices to prove this is in the very special case when $\gamma = \partial R$ is the boundary of a rectangle. In R we may find conjugate harmonic functions v_1 and v_2 . In this case

 $u_1 * \mathrm{d}u_2 - u_2 * \mathrm{d}u_1 = u_1 \,\mathrm{d}v_2 - u_2 \,\mathrm{d}v_1 = u_1 \,\mathrm{d}v_2 + v_1 \,\mathrm{d}u_2 - \mathrm{d}(u_2 v_1).$

Now $d(u_2v_1)$ is an exact differential and $u_1 dv_2 + v_1 du_2$ is the imaginary part of

$$(u_1 + iv_1) d(u_2 + iv_2).$$

Integrating an exact differential over γ is zero. On the other hand

$$(u_1 + iv_1) d(u_2 + iv_2) = F(z)f(z) dz$$

for appropriate holomorphic functions F(z) and f(z), so that integrating the product above is zero, since the product of two holomorphic functions is holomorphic.

Theorem 3.3. If u is harmonic in the annulus $\rho_1 < |z| < \rho_2$ then there are constants α and β such that

$$\frac{1}{2\pi} \int_{|z|=r} u \,\mathrm{d}\theta = \alpha \log r + \beta.$$

If further u is harmonic in the whole disc, then $\alpha = 0$, so that the integral is constant.

Proof. We apply (3.2) with $u_1 = \log r$ and $u_2 = u$. Let γ be the cycle obtained by describing the two circles $|z| = r_i$ in the opposite orientation, where $\rho_1 < r_1 < r_2 < \rho_2$. Then γ is homologous to zero, so that

$$\int_{\gamma} u_1 \ast \mathrm{d} u_2 - u_2 \ast \mathrm{d} u_1 = 0.$$

Now

$$*\mathrm{d}u = r\frac{\partial u}{\partial r}\,\mathrm{d}\theta,$$

on the circle |z| = r, so that we have

$$\log r_1 \int_{|z|=r_1} r_1 \frac{\partial u}{\partial r} \,\mathrm{d}\theta - \int_{|z|=r_1} u \,\mathrm{d}\theta = \log r_2 \int_{|z|=r_2} r_2 \frac{\partial u}{\partial r} \,\mathrm{d}\theta - \int_{|z|=r_2} u \,\mathrm{d}\theta.$$

It follows that the expression

$$\int_{|z|=r} u \,\mathrm{d}\theta - \log r \int_{|z|=r} r \frac{\partial u}{\partial r} \,\mathrm{d}\theta,$$

is independent of r, in the annulus. On the other hand, since

$$\int_{\gamma} * \mathrm{d}u = 0$$

if we run the same argument then we see that

$$\int_{|z|=r} r \frac{\partial u}{\partial r} \,\mathrm{d}\theta,$$

is also constant in the annulus.

Corollary 3.4. Let u be a harmonic function on U. Then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \, d\theta,$$

for any $z_0 \in U$, where r is sufficiently small.

Proof. Apply (3.2) to a circle centred at z_0 , sufficiently small so that it is contained in U. In this case $\alpha = 0$ and β is the value of u at z_0 . \Box

Corollary 3.5 (Maximum principle). A nonconstant harmonic function has neither a maximum nor a minimum in its region of definition. Thus the maximum and the minimum of a harmonic function on a compact set E are achieved on the boundary.

Note that the maximum principle has an interesting consequence. A continuous function u on a closed set, which is harmonic on the interior, is determined by its values on the boundary.

Indeed suppose that u_1 and u_2 are two continuous functions on E, which are harmonic on the interior and which agree on the boundary. Then $u_1 - u_2$ is a harmonic function which is zero on the boundary. On the other hand, the maximum and minimum value is taken on the boundary, so that the maximum and minimum of $u_1 - u_2$ is zero. But then $u_1 = u_2$.