
4. Poisson formula

In fact we can write down a formula for the values of u in the interior
using only the values on the boundary, in the case when E is a closed
disk. First note that (3.5) determines the value at the origin. On the
other hand, we can apply a Möbius transformation to move any point
to the centre. Suppose that u is harmonic on the circle |z| ≤ R. Then
the fractional linear transformation

z = S(w) =
R(Rw + a)

R + āw
,

carries the circle |w| ≤ 1 onto the circle |z| ≤ R and sends w = 0 to
z = a.

The function u(S(w)) is harmonic in the unit circle |w| ≤ 1 and we
obtain

u(a) =
1

2π

∫
|w|=1

u(S(w)) d argw.

As

w =
R(z − a)

R2 − āz
,

we see that

d argw = −idw
w

= −i
(

1

z − a
+

ā

R2 − āz

)
dz =

(
z

z − a
+

āz

R2 − āz

)
dθ.

Now R2 = zz̄ on the circle |z| = R, so that the last expression in
brackets can be rewritten as

z

z − a
+

ā

z̄ − ā
=
R2 − |a|2

|z − a|2
.

Equivalently we have

1

2

(
z + a

z − a
+
z̄ + ā

z̄ − ā

)
= Re

z + a

z − a
.

Thus

u(a) =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
u(z) dθ =

1

2π

∫
|z|=R

Re
z + a

z − a
u(z) dθ.

These expressions are known as Poisson’s formula. In polar coordinates
we have

u(reiθ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(θ − φ) + r2
u(Reiθ) dθ.

The derivation of this formula used the fact that u(z) is harmonic on
the whole closed disk. Suppose that we weaken the hypothesis so that
u(z) is only harmonic on the interior and continuous on the closed disk.
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Then u(rz) is harmonic on the closed disk, for any 0 < r < 1 and by
what we have already proved, we obtain

u(ra) =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
u(rz) dθ.

Now let r tend to one. Note that u(rz) tends uniformly to u(z), since
the disk |z| ≤ R is compact. We have thus proved:

Theorem 4.1 (Poisson’s Formula). Suppose that u(z) is harmonic for
|z| < R and continuous for |z| ≤ R. Then

u(a) =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
u(z) dθ,

for all |a| < R.

We have

u(z) = Re

[
1

2πi

∫
|w|=R

w + z

w − z
u(w)

dw

w

]
.

Since the expression in brackets is holomorphic for |z| < R, we have
that u(z) is the real part of the holomorphic function

f(z) =
1

2πi

∫
|w|=R

w + z

w − z
u(w)

dw

w
+ iC,

where C is an arbitrary real constant. This is known as Schwarz’s
formula.

Note that if we apply (4.1) to the harmonic function u = 1 then we
get ∫

|z|=R

R2 − |a|2

|z − a|2
dθ = 2π,

for all |a| < R.
Now suppose that u is no longer defined on the interior, it is only

defined on the boundary and it not even continuous on the boundary,
suppose for example that it is only a piecewise continuous function on
the boundary.

Then the integral in (4.1) still makes sense and in fact the integral is
still the real part of an analytic function, so that the integral is still a
harmonic function. However we no longer know what happens on the
boundary.

Suppose that we set R = 1. Let U(θ) be a piecewise continuous
function on the interval 0 ≤ θ ≤ 2π.

2



Definition 4.2. The integral

PU(z) =
1

2π

∫ 2π

0

Re
eiθ + z

eiθ − z
U(θ) dθ,

is called the Poisson integral.

Note that the Poisson integral is a function of U , which is linear in
U ,

PU+V = PU + PV and PcU = cPU .

We have U ≥ 0 implies that PU ≥ 0. Thus P is a positive linear
functional. Note that Pc = c. In particular

Lemma 4.3.

m ≤ U ≤M implies that m ≤ PU ≤M.

Proof. By assumption U −m ≥ 0. Thus

PU −m = PU − Pm = PU−m ≥ 0

and so m ≤ PU . The other inequality is similar. �

Theorem 4.4. PU(z) is harmonic for |z| < 1 and

lim
z→eiθ0

PU(z) = U(θ0),

if U is continuous at θ0.

Proof. We have already seen that PU is harmonic. Pick complementary
arcs C1 and C2 and denote by Ui the function which is zero on C3−i
and is equal to U on Ci. Then U = U1 + U2 so that

PU = PU1 + PU2 .

Note that PUi is given by a line integral over the arc Ci. Thus PUi is
continuous except possibly along Ci. Now

Re
eiθ + z

eiθ − z
=

1− |z|2

|eiθ − z|2
,

vanishes on |z| = 1 for z 6= eiθ. Thus PU1 is zero on the interior of the
arc C2 and by continuity PU1(z)→ 0 as z → eiθ ∈ C2.

Replacing U by U − U(θ0) we may suppose that U(θ0) = 0. Given
ε > 0 we can find C1 and C2 such that eiθ0 is an interior point of C2

and |U(θ)| < ε/2 for eiθ ∈ C2. But then |U2(θ)| < ε/2 for all θ so that
|PU2(z)| < ε/2 for all |z| < 1. On the other hand, since U1 is piecewise
continuous and U1(θ0) = 0, there is a constant δ > 0 such that

|PU1(z)| < ε/2 for |z − eiθ0| < δ.
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But then

|PU(z)| ≤ |PU1(z)|+ |PU2(z)| < ε,

as soon as |z| < 1 and |z − eiθ0| < δ. �

Theorem 4.5 (Reflection Principle). Let U be a region which is in-
variant under complex conjugation, let U+ be the part above the real
axis and let σ be the intersection of U with the real axis.

Let v(z) be a continuous function on U+ ∪ σ which is harmonic on
U+ and zero on σ. Then v(z) can be extended to a harmonic function
on the whole of U and this function satisfies

v(z̄) = −v(z).

Further if v(z) is the imaginary part of a holomorphic function f(z)
in U+ then f(z) can be extended to a holomorphic function on the whole
of U and this function satisfies f(z) = f̄(z̄).

Proof. Define a function V : U −→ R by the rule

V (z) =


v(z) if Im z > 0

0 if Im z = 0

−v(z̄) if Im z < 0.

It suffices to show that V (z) is harmonic in a neighbourhood of a point
x0 ∈ σ. Pick a small disc about x0 contained in U and let PV be the
Poisson integral with respect to this disk, using the boundary values
given by V .

Now the difference V −PV is harmonic on the upper half disc B+. It
vanishes on the upper circle by (4.4) and also on the diameter, since V
is zero on σ and PV is zero by symmetry. Thus by the maximum and
minimum principle V = PV on B+. Similarly V = PV on the lower
half disc B−. Thus V = PV is harmonic on the whole of B. Thus V (z)
is harmonic on the whole of U .

We may construct a harmonic conjugate −u0 of v in the disc B. We
may normalise u0 so that u0 = Re f(z) on B+. Consider

U0(z) = u0(z)− u0(z̄).

On σ,
∂U0

∂x
= 0 and

∂U0

∂y
= 2

∂u0
∂y

= −2
∂v

∂x
= 0.

Thus the analytic function

∂U0

∂x
− i∂U0

∂y
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vanishes on the real axis so that it vanishes everywhere. Thus U0 is a
constant which must be zero. In particular u0(z) = u0(z̄). Repeating
this construction for any point of σ and observing that the functions
so constructed agree on overlaps, the result follows. �
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