5. Jensen formula

Theorem 5.1 (Jensen's Formula). Let $f(z)$ be a holomorphic function for $|z| \leq \rho$.

Then

$$
\log |c|+h \log \rho=-\sum_{i=1}^{n} \log \left(\frac{\rho}{\left|a_{i}\right|}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the non-zero zeroes, repeated according to multiplicity, of f in the open disc $|z|<\rho$ and

$$
f(z)=c z^{h}+\ldots
$$

is the power series expansion for $f(z)$.
Proof. We first prove this result under the hypotheses that $f(z)$ is nowhere zero in the closed disc $|z| \leq \rho$. Under these assumptions $\log |f(z)|$ is a harmonic function and the LHS is just $\log |f(0)|$.

Thus

$$
\log |f(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta
$$

Now suppose that $f(z)$ has zeroes on the circle $|z|=\rho$. We check that the same formula holds. If we replace $f(z)$ by

$$
g(z)=\frac{f(z)}{z-\rho e^{i \theta_{0}}}
$$

then $g(z)$ is a holomorphic function with one fewer zero than $f(z)$. By induction on the number of zeroes on the circle

$$
\log |g(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|g\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta
$$

Now

$$
\log |f(0)|=\log |g(0)|-\log \rho,
$$

and

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|g\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\rho e^{i \theta}-\rho e^{i \theta_{0}}\right| \mathrm{d} \theta
$$

It suffices then to show that

$$
\log \rho=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\rho e^{i \theta}-\rho e^{i \theta_{0}}\right| \mathrm{d} \theta .
$$

Equivalently we want

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|e^{i \theta}-e^{i \theta_{0}}\right| \mathrm{d} \theta=0
$$

By symmetry this integral does not depend on θ_{0}. So we just have to show that

$$
\int_{0}^{2 \pi} \log \left|1-e^{i \theta}\right| \mathrm{d} \theta=0
$$

But we actually showed this when we computed the value of

$$
\int_{0}^{\pi} \log \sin x \mathrm{~d} x
$$

using contour integration.
Now suppose that $f(z)$ has zeroes $a_{1}, a_{2}, \ldots, a_{n}$ (repeated according to multiplicity) but $f(z)$ is non-zero at the origin. Let

$$
F(z)=f(z) \prod_{i=1}^{n} \frac{\rho^{2}-\bar{a}_{i} z}{\rho\left(z-a_{i}\right)} .
$$

Then $F(z)$ doesn't vanish anywhere in the disc $|z|<\rho$ and $|F(z)|=$ $|f(z)|$. Thus

$$
\log |F(0)|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta
$$

It follows that

$$
\log |f(0)|=-\sum_{i=1}^{n} \log \left(\frac{\rho}{\left|a_{i}\right|}\right)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta
$$

Finally we need to consider the general case when $f(z)$ is possibly zero at the origin. Let

$$
g(z)=f(z)\left(\frac{\rho}{z}\right)^{h}=c \rho^{h}+\ldots
$$

Then $g(z)$ doesn't vanish at the origin $|g(z)|=|f(z)|$ on the circle $|z|=\rho$ and

$$
\log |g(0)|=\log |c|+h \log \rho
$$

Corollary 5.2 (Poisson-Jensen formula). Let $f(z)$ be a holomorphic function for $|z| \leq \rho$ such that $f(z) \neq 0$.

Then
$\log |f(z)|=-\sum_{i=1}^{n} \log \left|\frac{\rho^{2}-\bar{a}_{i} z}{\rho\left(z-a_{i}\right)}\right|+\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{\rho e^{i \theta}+z}{\rho e^{i \theta}-z} \log \left|f\left(\rho e^{i \theta}\right)\right| \mathrm{d} \theta$,
where $a_{1}, a_{2}, \ldots, a_{n}$ are the non-zero zeroes, repeated according to multiplicity, of f in the open disc $|z|<\rho$.

Proof. Apply Jensen's formula to the function $F(z)$ appearing in the proof of (5.1).

