6. The Riemann Zeta function

Definition-Lemma 6.1. The function

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s} \quad(s=\sigma+i t)
$$

is called the Riemann zeta function.
$\zeta(s)$ is a holomorphic function for $\operatorname{Re} s>1$.
Proof. Compare the sum

$$
\sum_{n=1}^{\infty} n^{-s}
$$

with the sum

$$
\sum_{n=1}^{\infty} n^{-\sigma}
$$

which converges uniformly for all $\sigma \geq \sigma_{0}$, where $\sigma_{0}>1$ is fixed.
Enumerate the prime numbers in increasing order:

$$
p_{1}, p_{2}, \ldots
$$

Theorem 6.2. For $\sigma=\operatorname{Re} s>1$

$$
\frac{1}{\zeta(s)}=\prod_{n=1}^{\infty}\left(1-p_{n}^{-s}\right)
$$

Proof. First we check absolute convergence of the product. We have to consider convergence of the sum

$$
\sum_{n=1}^{\infty}\left|p_{n}^{-s}\right|=\sum_{n=1}^{\infty} p_{n}^{-\sigma} .
$$

If we compare this with

$$
\sum_{n=1}^{\infty} n^{-s}
$$

which converges uniformly for all $\sigma \geq \sigma_{0}$, where $\sigma_{0}>1$ is fixed we see that the product converges uniformly in the same range.

Thus for $\sigma>1$ we have

$$
\zeta(s)\left(1-2^{-s}\right)=\sum_{n=1}^{\infty} n^{-s}-\sum_{n=1}^{\infty}(2 n)^{-s}=\sum m^{-s}
$$

where m runs over the odd integers.
Similarly, by inclusion-exclusion,

$$
\zeta(s)\left(1-2^{-s}\right)\left(1-3^{-s}\right)=\sum m^{-s}
$$

where now m runs over the integers which are not divisible by 2 or by 3.

More generally, again by inclusion-exclusion

$$
\zeta(s)\left(1-2^{-s}\right)\left(1-3^{-s}\right) \cdots\left(1-p_{N}^{-s}\right)=\sum m^{-s}
$$

where now m runs over the integers which are not divisible by any of the primes up to p_{N}. The first term in the sum is 1 and the next one is p_{N+1}^{-s}. Therefore, as N tends to the infinity, the sum on the right tends to 1 .

It follows that

$$
\lim _{N \rightarrow \infty} \zeta(s) \prod_{i=1}^{N}\left(1-p_{i}^{-s}\right)=1
$$

Corollary 6.3 (Euclid). There are infinitely many primes.
Proof. We have

$$
\zeta(s) \prod_{p}\left(1-p^{-s}\right)=1
$$

where the product runs over all primes. As s tends to one the Riemann zeta function tends to

$$
\sum_{n=1}^{\infty} n^{-1}
$$

which diverges. Thus

$$
\prod_{p}\left(1-p^{-s}\right)
$$

tends to zero. This is only possible if the product is an infinite product.

