
7. Principal values

Consider an integral of the form∫ ∞
−∞

R(x)eix dx,

where R(x) is a rational function. Assume that the degree of the de-
nominator is at least two more than the degree of the numerator. If we
split this integral into real and imaginary parts we get two integrals:∫ ∞

−∞
R(x) cosx dx, and

∫ ∞
−∞

R(x) sinx dx.

To compute the original integral, as usual we integrate over a closed
path which is the interval from −R to R and a semicircle of radius R
in the upper half plane. As before the integral over the semicircle goes
to zero as R goes to infinity. It then follows by the residue theorem
that ∫ ∞

−∞
R(x)eix dx = 2πi

∑
y>0

ResR(z)eiz.

Now suppose that R(z) has only a simple zero at∞, that is, suppose
the denominator has degree exactly one more than the numerator. In
this case we have to be a little bit more careful in our choice of contour.
It is not so convenient to use semicircles. For a start the integral over
the semicircle is not so easy to estimate; secondly it is also not so
clear that the real integral converges, so not only do we need to show
convergence of the limit

lim
X→∞

∫ X

−X
R(x)eix dx,

but also of the integral ∫ X2

−X1

R(x)eix dx,

as X1 and X2 approach infinity independently.
The solution is to integrate around a rectangle with vertices X2,

X2 + iY , −X1 + iY and −X1, where Y > 0. If X1, X2 and Y are
sufficiently large then this rectangle contains all of the poles in the
upper half plane. By hypothesis |zR(z)| is bounded, so that the integral
over the right vertical side is, except for a constant factor, less than,∫ Y

0

e−y
dy

|z|
<

1

X2

∫ Y

0

e−y dy.
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The last integral can be computed and it is less than one. Thus the
integral over the right vertical side is less than a constant multiple of
1/X2. Similarly for the integral over the left vertical side.

The integral over the top horizontal side is less than

e−Y (X1 +X2)

Y

multiplied by a constant. If we fix X1 and X2 and let Y go to infinity
this goes to zero and so∣∣∣∣∣

∫ X2

−X1

R(x)eix dx− 2πi
∑
y>0

ResR(z)eiz

∣∣∣∣∣ < A(
1

X1

+
1

X2

)

for some constant A. Thus∫ ∞
−∞

R(x)eix dx = 2πi
∑
y>0

ResR(z)eiz.

So far we have been tacitly assuming that there are no poles along the
real axis. But suppose that there are. Note that the real or imaginary
part of the integral might well still exist if the poles are at the zeroes
of cos x or of sinx.

For example, let’s suppose that R(z) has a simple pole at the origin
and nowhere else on the real axis. Take a contour which is a rectangle
and a small circle of radius ρ which goes below the x-axis. If X1, X2

and Y are sufficiently large and ρ is sufficiently small then this contour
includes all of the poles in the upper half plane, the pole at the origin
and nothing else.

Suppose that the residue at the origin is B so that

R(z)eiz = B/z +R0(z),

where R0(z) is holomorphic at the origin. The integral of the first term
is πiB and the integral of the second term tends to zero as ρ tends to
zero.

Thus

lim
ρ→0

(∫ −ρ
−∞

+

∫ ∞
ρ

R(x)eix dx

)
= 2πi

[∑
y>0

ResR(z)eiz +B/2

]
.

The limit on the left is called Cauchy’s principal value. It exists
even though the integral itself might have no meaning. It is as though
one half of the residue at zero has been included in the contour integral.
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In the general case where there are several simple poles along the
real axis, we have

pr. v.

∫ ∞
−∞

R(x)eix dx = 2πi
∑
y>0

ResR(z)eiz + πi
∑
y=0

ResR(z)eiz.

For example,

pr. v.

∫ ∞
−∞

eix

x
dx = πi.

If we separate into real and imaginary parts, we see that the real part
is trivial since the integrand is odd. For the imaginary part, we don’t
need to take the principal value and we get∫ ∞

−∞

sinx

x
dx = π.
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