
9. The Riemann Zeta function II

Recall

Γ(s) =

∫ ∞
0

xs−1e−x dx,

for σ > 1.
If we replace x by nx in the integral then we obtain

n−sΓ(s) =

∫ ∞
0

xs−1e−nx dx.

Now sum over n to get

ζ(s)Γ(s) =

∫ ∞
0

xs−1

ex − 1
dx.

Note that as σ > 1 the integral is absolutely convergent at both ends,
x = 0 and x = ∞ and so we can switch the order of integration and
summation. Also we define

xs−1 = e(s−1) log x

unambiguously, in the usual way.
Now we define two paths C and Cn. For C we come in from positive

infinity just above the real axis, describe most of a small circle centred
at the origin and return to infinity just below the real axis. We don’t
care too much about the exact definition of C except that the circle
has radius r less than 2π. For Cn we start at point of C describe most
of a square encompassing ±2kπi, 0 ≤ k ≤ n and end at point of C just
below the x-axis. We then describe the bounded part of C to complete
a full cycle.

Theorem 9.1. If σ > 1 then

ζ(s) = −Γ(1− s)
2πi

∫
C

(−z)s−1

ez − 1
dz,

where (−z)s−1 is defined on the complement of the positive real x-axis
as

e(s−1) log(−z) with − π < Im log(−z) < π.

Proof. The integral obviously converges. By Cauchy’s theorem the
integral does not depend on C, as long as C does not go around any
non-zero multiples of 2πi. In particular we are free to let the radius of
the circle go to zero.

Consider the integral around the circular part of C. As r goes to
zero the length of the path is proportional to r. As the denominator
is also proportional to r and (−z)s−1 goes to zero the integral around
the circular part goes to zero.
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We are left with an integral along the positive real axis described
both ways. On the upper edge

(−z)s−1 = xs−1e−(s−1)πi,

and on the lower edge

(−z)s−1 = xs−1e(s−1)πi.

It follows that∫
C

(−z)s−1

ez − 1
dz = −

∫ ∞
0

xs−1e−(s−1)πi

ex − 1
dx+

∫ ∞
0

xs−1e(s−1)πi

ex − 1
dx

= 2i sinπ(s− 1)ζ(s)Γ(s).

Now use the fact that

sin π(s− 1) = − sin πs and Γ(s)Γ(1− s) =
π

sin πs
. �

Corollary 9.2. The ζ-function can be extended to a meromorphic func-
tion on the whole complex plane whose only pole is a simple pole at
s = 1 with residue 1.

Proof. Consider the RHS of the equation in (9.1). Γ(1−s) is meromor-
phic on C and the integral defines an entire function. Since the RHS is
meromorphic on the whole complex plane we can use this equation to
extend ζ(s) to a meromorphic function on the whole complex plane.

Γ(1 − s) has poles at s = 1, s = 2, . . . . But we already know that
ζ(s) is holomorphic for σ > 1 so the zeroes of the integral must cancel
with the poles and the only pole is at the origin.

As s = 1, Γ(1 − s) has a simple pole with residue 1. On the other
hand ∫

C

1

ez − 1
dz = 2πi,

by the Residue theorem. Thus ζ(s) has residue one at s = 1. �

We can calculate ζ(−n) where n ∈ N explicitly. We already know
that

1

ez − 1
=

1

z
− 1

2
+
∞∑
1

(−1)k−1
Bk

(2k)!
z2k−1.

We have

ζ(−n) = (−1)n
n!

2πi

∫
C

z)−n−1

ez − 1
dz.

Thus ζ(−n) is (−1)nn! times the coefficient of zn in the expansion
above.
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Thus

ζ(0) = −1/2 ζ(−2m) = 0 and ζ(−2m+ 1) =
(−1)mBm

2m
.

The points −2m are called the trivial zeroes of the ζ-function.
Note that if σ > 1 we have

|ζ(s)| ≤ ζ(σ).

Thus we have good control on the ζ-function for σ > 1. In fact we also
have good control for σ < 0:

Theorem 9.3.

ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s).

Proof. We use the path Cn. We assume that square part is defined by
the lines t = ±(2n + 1)π and σ = ±(2n + 1)π. The cycle Cn − C has
winding number one about the points ±2mπi with m = 1, 2, . . . , n.
The poles at these points of

(−z)s−1

ez − 1

are simple with residues
(∓2mπi)s−1.

Thus

1

2πi

∫
Cn−C

(−z)s−1

ez − 1
dz =

n∑
m=1

[
(−2mπi)s−1 + (2mπi)s−1

]
=

n∑
m=1

(2mπ)s−1(is−1 + (−i)s−1)

= 2
n∑

m=1

(2mπ)s−1(is − (−i)s)/2i

= 2
n∑

m=1

(2mπ)s−1 sin
πs

2
,

where we used the fact that i = eπi/2. We divide Cn into two parts,
C ′n + C ′′n, where C ′n is the square bit and C ′′n is the rest. It is easy to
see that |ez − 1| is bounded below on C ′n by a fixed positive constant,
independent of n, while |(−z)s−1| is bounded by a multiple of ns−1.
The length of C ′n is of the order of n and so∣∣∣∣∫

C′
n

(−z)s−1

ez − 1
dz

∣∣∣∣ ≤ Anσ,
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for some constant A. If σ < 0 then the integral over C ′n will tend to
zero as n tends to infinity and the same is true for the integral over
C ′′n. Therefore the integral over Cn − C will tend to the integral over
−C and so the LHS tends to

ζ(s)

Γ(1− s)
.

Under the same condition on σ the series∑
ms−1

converges to ζ(1− s). Thus the RHS is a multiple of ζ(1− s).
Taking the limit gives the desired equation. A priori this is only

valid for σ < 0 but if two meromorphic functions are equal on an open
set they are equal everywhere. �

One can rewrite the functional equation. For example, replacing s
by 1− s we have

ζ(1− s) = 21−sπ−s cos
πs

2
Γ(s)ζ(s).

One can also derive this using the functional equation

Γ(s)Γ(1− s) =
π

sin πs
.

We also have

Corollary 9.4. The function

ξ(s) =
1

2
s(1− s)π−s/2Γ(s/2)ζ(s),

is entire and satisfies ξ(s) = ξ(1− s).

Proof. ξ(s) is a meromorphic function on C. The pole of ζ(s) at s = 1
cancels with 1−s and the poles of Γ(s/2) cancel with the trivial zeroes
of ζ(s). Thus ξ(s) is an entire function.

Note that from the functional equation

Γ(s)Γ(1− s) =
π

sin πs

we get

Γ((1− s)/2)Γ((1 + s)/2) =
π

cos πs/2
.

Recall also Legendre’s duplication formula
√
πΓ(2z) = 22z−1Γ(z)Γ(z + 1/2).
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ξ(1− s) =
1

2
(1− s)sπ(s−1)/2Γ((1− s)/2)ζ(1− s)

=
1

2
s(1− s)π(s−1)/2Γ((1− s)/2)21−sπ−s cos

πs

2
Γ(s)ζ(s)

=
1

2
s(1− s)π−s/2ζ(s)21−sπ−1/2Γ(s)Γ((1− s)/2) cos

πs

2

=
1

2
s(1− s)π−s/2ζ(s)π1/2Γ(s)21−sΓ((1 + s)/2)−1

=
1

2
s(1− s)ζ(s)π−s/2Γ(s/2)

= ξ(s). �

We know from the series development of ζ(s) that there are no zeroes
in the region σ > 1. Using the functional equation it follows that ζ(s)
has no zeroes in the region σ < 0 apart from the trivial zeroes. So all of
the zeroes belong to the strip 0 ≤ σ ≤ 1. The Riemann hypothesis
states that the only zeroes in the strip 0 ≤ σ ≤ 1 belong to the line
σ = 1/2.

It is known that there are no zeroes on the lines σ = 0 and σ = 1.
It also known that at least one third of the zeroes lines on the line
σ = 1/2.
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