
MODEL ANSWERS TO THE FIRST HOMEWORK

1. Note that

1− 1

n2
=
n2 − 1

n2
=

(n− 1)(n+ 1)

n · n
.

It follows that the partial product is

pn = (1− 1/4)(1− 1/9) . . . (1− 1/(n− 1)2)(1− 1/n2)

=
1 · 3
2 · 2

2 · 4
3 · 3

3 · 5
4 · 4

. . .
(n− 2)n

(n− 1) · (n− 1)

(n− 1)(n+ 1)

n · n

=
1

2

n+ 1

n
.

Therefore
∞∏
n=2

(
1− 1

n2

)
= lim

n→∞
pn =

1

2
.

2. The zeroes of cos
√
z are an = (2n+ 1)2π2/4. Consider the product

∞∏
n=0

(
1− z

an

)
.

The product converges absolutely if and only if

∞∑
n=0

|z|
|an|

converges. As ∑ 1

(2n+ 1)2
,

converges it follows that

∞∏
n=0

(
1− z

an

)
is the canonical product for cos

√
z. The genus of the canonical product

is zero.
We have that

cos
√
z = eg(z)

∞∏
n=0

(
1− z

an

)
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for some entire function g(z). The genus of cos
√
z is then the degree

of g(z), if g(z) is a polynomial and ∞ otherwise. If we replace
√
z by

z we get

cos z = eg(z
2)

∞∏
n=0

(
1− z2

an

)
.

Let’s replace z by π/2− z and check we get the canonical product for
sin z:

sin z = cos(π/2− z)

= eg((π/2−z)
2)

∞∏
n=0

(
1− (π/2− z)

(2n+ 1)π/2

)(
1 +

(π/2− z)

(2n+ 1)π/2

)

= eg((π/2−z)
2)

∞∏
n=0

(
nπ + z

(2n+ 1)π/2

)(
(n+ 1)π − z)

(2n+ 1)π/2

)

= zeg((π/2−z)
2)

∞∏
n6=0

4n(n+ 1)

(2n+ 1)2

(
1 +

z

nπ

)(
1− z

nπ

)
= czeg((π/2−z)

2)

∞∏
n6=0

(
1− z2

n2π2

)
,

for some constant c. Comparing with the canonical product for sin z
we see that g((π/2 − z)2) is constant. Thus g(z) has degree zero and
the genus of cos

√
z is zero.

3. Note that the complement in P1 of the unbounded region contains at
least one bounded region and the point at∞, which is an isolated point
of the complement. Thus the complement of the unbounded region is
not connected and so the unbounded region is not simply connected.
On the other hand the boundary of every bounded region is a simply
closed curve. The Jordan curve theorem implies that the complement
of the bounded region in C is connected Since the point ∞ is in the
closure of the complement, the complement in P1 also has only one
component. Thus every bounded region is simply connected.
4. Fix a point a ∈ U , and for any point z ∈ U , pick a path γ from a to
z. Then define

g(z) =

∫
γ

dz

z
.

Note that as U is simply connected, if γ1 and γ2 are two closed paths
starting at a and ending at z then for the cycle γ1 − γ2 we have∫

γ1−γ2

dz

z
= 0.
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But this exactly says, ∫
γ1

dz

z
=

∫
γ2

dz

z
.

Thus g is well-defined. It is clear that g(z) is holomorphic and

g′(z) =
1

z
.

We have

d

dz
(ze−g(z)) = e−g(z) − e−g(z)

= 0.

Thus ze−g(z) is constant. It follows that

eg(z)+log z0−g(z0) = z,

so that the logarithm exists and is holomorphic. But then we may
define

zα = eα log z and zz = ez log z.

5. We calculate the second logarithmic derivative of Γ(z)

d

dz

(
Γ′(z)

Γ(z)

)
=

∞∑
m=0

1

(z +m)2
.

Let’s compare this with the second logarithmic derivative of

Φ(z) = Γ
( z
n

)
Γ

(
z + 1

n

)
· · ·Γ

(
z + n− 1

n

)
.

d

dz

(
Φ′(z)

Φ(z)

)
=

1

n2

∞∑
m=0

1

(z/n+m)2
+

1

((z + 1)/n+m)2
+ · · ·+ 1

((z + n− 1)/n+m)2

=
∞∑
m=0

1

(z +mn)2
+

1

(z +mn+ 1)2
+ · · ·+ 1

(z +mn+ n− 1)2

=
d

dz

(
Γ′(z)

Γ(z)

)
.

If we integrate both sides we get

Γ′(z)

Γ(z)
=

Φ′(z)

Φ(z)
+ a

Integrating once more we get

log Γ(z) = log Φ(z) + az + b.
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Thus

Γ(z) = eaz+bΦ(z),

where a and b are constants to be determined.
Note that

Φ(2) =
Φ(1)Γ(1 + 1/n)

Γ(1/n)
=

Φ(1)

n
.

Thus

1 =
Γ(2)

Γ(1)
= ea

Φ(2)

Φ(1)
=
ea

n
.

It follows that

eaz = nz.

Assume that n = 2m + 1 is odd (the case where n is even can be
treated similarly or one can apply induction and Legendre’s duplication
formula). To determine the constant b we need to determine the value
of one value of Φ.

Φ(1) =
n−1∏
i=1

Γ(i/n)Γ(1)

=
m∏
i=1

Γ(i/n)Γ((n− i)/n)

=
m∏
i=1

π

sin πi/n
,

where we used the functional equation

Γ(z)Γ(1− z) =
π

sin πz
.

Let ω = e2πi/n, a primitive root of unity. Then

sin πi/n =
1

2
Im(ωi − ω−i),

as ω̄ = ω−1. Thus
m∏
i=1

π

sin πi/n
=

2mπm∏m
i=1 Im(ωi − ωn−i)

.

To finish we just need to show that

m∏
i=1

Im(ωi − ωn−i) =
√
n.

4



As it is not hard to see that the product is positive, it suffices to show
that

n−1∏
i=1

(ωi − ωn−i) = n.

Now
n−1∏
i=1

(ωi − ωn−i) =
n−1∏
i=1

ωi
n−1∏
i=1

(1− ωi)

= ω
∑n−1

i=1 i

n−1∏
i=1

(1− ωi)

=
n−1∏
i=1

(1− ωi).

Now

1 + x+ x2 + · · ·+ xn−1 =
xn − 1

x− 1
=

n−1∏
i=1

(x− ωi).

Thus, setting x = 1, we get
m∏
i=1

(1− ωi) = 1 + 1 + · · ·+ 1 = n.

Putting all of this together we get

(2π)
n−1
2 Γ(z) = n(z−1/2)Γ

( z
n

)
Γ

(
z + 1

n

)
· · ·Γ

(
z + n− 1

n

)
.

6. As
Γ(z + 1) = zΓ(z)

by induction on n we have

Γ(z + n+ 1) = (z + n)(z + n− 1) · · · zΓ(z).

Thus

Γ(z) =
Γ(z + n+ 1)

(z + n)(z + n− 1) · · · z
,

Therefore Γ(z) has a pole order one z = 0, z = −1, . . . , z = −n. The
value of the pole at z = −n is then

lim
z→−n

(z + n)Γ(z) = lim
z→−n

Γ(z + n+ 1)

(z + n− 1) · · · z
=

Γ(1)

−1 · −2 · · · − n
=

(−1)n

n!
.
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