
MODEL ANSWERS TO THE SECOND HOMEWORK

1. Possibly replacing ρ by a slightly smaller number we may assume
that u is harmonic on the closed disc |z| ≤ ρ. In particular we may
assume that u is continuous on the closed disc z| = ρ. Let U be the
restriction of u to the circle |z| = ρ. Let v = PU be the harmonic
function given by the Poisson integral.
Pick ε > 0 and let

w(z) = u(z)− v(z) + ε log r/ρ.

As u(z) is bounded and v(z) is harmonic on the whole disc, w(z) tends
to −∞ as z tends to zero. Consider a circle of radius δ centred at the
origin. Then w is a harmonic function on the annulus δ ≤ |z| ≤ ρ.
The maximum is achieved on the boundary. On the circle |z| = ρ,
w(z) = 0 and if δ > 0 is sufficiently small then w(z) < 0 on |z| = δ.
Thus w(z) ≤ 0. Letting ε > 0 we see that

u(z) ≤ v(z).

Replacing u by −u we get the reverse inequality. Thus u(z) = v(z) and
u extends to a harmonic function v.
2. Suppose that f(z) is identically zero on the circle |z| = r1. By
the reflection principle one can extend f(z) to a holomorphic function
in a neighbourhood of any point where |z| = r1 (just apply a Möbius
transformation so that the circle |z| = r1 is mapped to the real axis).
But then f(z) is identically zero and there is nothing to prove. Similarly
if f(z) is identically zero on |z| = r2. Thus we may assume that M(r1)
and M(r2) are positive.
Let

u(z) = a log |z|+ log |f(z)|.
Then u is harmonic away from the zeroes of f(z), as it is a linear
combination of harmonic functions. Put small circles around the zeroes
of f(z). By the maximum principle the maximum of u occurs on the
boundary, which is either on the two big circles |z| = r1 and |z| = r2
or on one of the small circles. But if the circles are small enough then
log |f(z)| is large and negative so that the maximum is on one of the
big circles.
Thus

a log r + logM(r) ≤ max(a log r1 + logM(r1), a log r2 + logM(r2)).
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Now pick a so that

a log ri + logM(ri)

is independent of i. Then

a =
logM(r2)− logM(r1)

log r1 − log r2
,

and so

logM(r) ≤ a(log r2 − log r) + logM(r2)

=
(logM(r2)− logM(r1))(log r2 − log r) + logM(r2)(log r1 − log r2)

(log r1 − log r2)

=
logM(r2)(log r − log r1) + logM(r1))(log r2 − log r)

(log r2 − log r1)

= logM(r1)
αM(r2)

1−α.

If we have equality then u(z) must be constant. But then

|f(z)| = |zb|,

for some constant b, so that

f(z) = eiθzb,

for some constant θ.
3. Let

f : ∆ −→ H,
be the Möbius transformation given by

w −→ z = i
w + 1

1− w
.

Then f is biholomorphic, and sends the unit circle to the upper half-
plane. The inverse transformation is

z −→ w =
z − i
z + i

.

Let V (θ) = U(f(θ)) = U(ξ). Then V is piecewise continuous and

PV (w) =
1

2π

∫ 2π

0

1− |w|2

|eiθ − w|2
V (θ) dθ,

is harmonic in the unit disc with boundary values V (θ) at points of
continuity. Now make the substitution

eiθ =
ξ − i
ξ + i

.
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Then

dθ =
2(ξ + i) dξ

(ξ + i)2(ξ − i)
=

2 dξ

ξ2 + 1
,

and

1− |w|2

|eiθ − w|2
= |ξ + i|2 |z + i|2 − |z − i|2

|(ξ − i)(z + i)− (ξ + i)(z − i)|2

= (ξ2 + 1)
x2 + (y + 1)2 − x2 − (y − 1)2

4|ξ − z|2

= (ξ2 + 1)
4y

4(x− ξ)2 + y2

= (ξ2 + 1)
y

(x− ξ)2 + y2
,

which gives the result.
4. Let u be a harmonic function on the upper half plane, which is
continuous on the real axis. Let U be the restriction of u to the real
axis and let PU(z) be the Poisson integral. Then u − PU is harmonic
and zero on the real axis. Now suppose that u is bounded. Pick ε > 0
and consider

v(z) = u(z)− PU(z)− ε Im(
√
iz).

Note that for Im z ≥ 0, the argument of iz lies between π/2 and 3π/2
so that

√
iz is a holomorphic function and Im(

√
iz) is harmonic and

moreover the argument of
√
iz lies between π/4 and 3π/4.

Thus v tends to zero to −∞ as z tends to∞. Consider the region from
−R to R along the real axis and a semicircle of radius R to R to −R.
The maximum of v(z) occurs on the boundary. If R is large enough
the maximum is on the real axis and so the maximum is zero.
It follows that

u− PU ≤ ε Im(
√
iz) ≤ 0.

Letting ε go to zero, we get

u ≤ PU .

Replacing u by −u we get the reverse inequality

PU ≤ u.

But then u = PU , as required.
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