MODEL ANSWERS TO THE SECOND HOMEWORK

1. Possibly replacing ρ by a slightly smaller number we may assume that u is harmonic on the closed disc $|z| \leq \rho$. In particular we may assume that u is continuous on the closed disc $z \mid=\rho$. Let U be the restriction of u to the circle $|z|=\rho$. Let $v=P_{U}$ be the harmonic function given by the Poisson integral.
Pick $\epsilon>0$ and let

$$
w(z)=u(z)-v(z)+\epsilon \log r / \rho .
$$

As $u(z)$ is bounded and $v(z)$ is harmonic on the whole disc, $w(z)$ tends to $-\infty$ as z tends to zero. Consider a circle of radius δ centred at the origin. Then w is a harmonic function on the annulus $\delta \leq|z| \leq \rho$. The maximum is achieved on the boundary. On the circle $|z|=\rho$, $w(z)=0$ and if $\delta>0$ is sufficiently small then $w(z)<0$ on $|z|=\delta$. Thus $w(z) \leq 0$. Letting $\epsilon>0$ we see that

$$
u(z) \leq v(z)
$$

Replacing u by $-u$ we get the reverse inequality. Thus $u(z)=v(z)$ and u extends to a harmonic function v.
2. Suppose that $f(z)$ is identically zero on the circle $|z|=r_{1}$. By the reflection principle one can extend $f(z)$ to a holomorphic function in a neighbourhood of any point where $|z|=r_{1}$ (just apply a Möbius transformation so that the circle $|z|=r_{1}$ is mapped to the real axis). But then $f(z)$ is identically zero and there is nothing to prove. Similarly if $f(z)$ is identically zero on $|z|=r_{2}$. Thus we may assume that $M\left(r_{1}\right)$ and $M\left(r_{2}\right)$ are positive.
Let

$$
u(z)=a \log |z|+\log |f(z)| .
$$

Then u is harmonic away from the zeroes of $f(z)$, as it is a linear combination of harmonic functions. Put small circles around the zeroes of $f(z)$. By the maximum principle the maximum of u occurs on the boundary, which is either on the two big circles $|z|=r_{1}$ and $|z|=r_{2}$ or on one of the small circles. But if the circles are small enough then $\log |f(z)|$ is large and negative so that the maximum is on one of the big circles.
Thus

$$
a \log r+\log M(r) \leq \max \left(a \log r_{1}+\log M\left(r_{1}\right), a \log r_{2}+\log M\left(r_{2}\right)\right)
$$

Now pick a so that

$$
a \log r_{i}+\log M\left(r_{i}\right)
$$

is independent of i. Then

$$
a=\frac{\log M\left(r_{2}\right)-\log M\left(r_{1}\right)}{\log r_{1}-\log r_{2}},
$$

and so

$$
\begin{aligned}
\log M(r) & \leq a\left(\log r_{2}-\log r\right)+\log M\left(r_{2}\right) \\
& =\frac{\left(\log M\left(r_{2}\right)-\log M\left(r_{1}\right)\right)\left(\log r_{2}-\log r\right)+\log M\left(r_{2}\right)\left(\log r_{1}-\log r_{2}\right)}{\left(\log r_{1}-\log r_{2}\right)} \\
& =\frac{\left.\log M\left(r_{2}\right)\left(\log r-\log r_{1}\right)+\log M\left(r_{1}\right)\right)\left(\log r_{2}-\log r\right)}{\left(\log r_{2}-\log r_{1}\right)} \\
& =\log M\left(r_{1}\right)^{\alpha} M\left(r_{2}\right)^{1-\alpha} .
\end{aligned}
$$

If we have equality then $u(z)$ must be constant. But then

$$
|f(z)|=\left|z^{b}\right|
$$

for some constant b, so that

$$
f(z)=e^{i \theta} z^{b},
$$

for some constant θ.
3. Let

$$
f: \Delta \longrightarrow \mathbb{H}
$$

be the Möbius transformation given by

$$
w \longrightarrow z=i \frac{w+1}{1-w}
$$

Then f is biholomorphic, and sends the unit circle to the upper halfplane. The inverse transformation is

$$
z \longrightarrow w=\frac{z-i}{z+i}
$$

Let $V(\theta)=U(f(\theta))=U(\xi)$. Then V is piecewise continuous and

$$
P_{V}(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-|w|^{2}}{\left|e^{i \theta}-w\right|^{2}} V(\theta) d \theta
$$

is harmonic in the unit disc with boundary values $V(\theta)$ at points of continuity. Now make the substitution

$$
e^{i \theta}=\frac{\xi-i}{z_{2}+i}
$$

Then

$$
d \theta=\frac{2(\xi+i) d \xi}{(\xi+i)^{2}(\xi-i)}=\frac{2 d \xi}{\xi^{2}+1}
$$

and

$$
\begin{aligned}
\frac{1-|w|^{2}}{\left|e^{i \theta}-w\right|^{2}} & =|\xi+i|^{2} \frac{|z+i|^{2}-|z-i|^{2}}{|(\xi-i)(z+i)-(\xi+i)(z-i)|^{2}} \\
& =\left(\xi^{2}+1\right) \frac{x^{2}+(y+1)^{2}-x^{2}-(y-1)^{2}}{4|\xi-z|^{2}} \\
& =\left(\xi^{2}+1\right) \frac{4 y}{4(x-\xi)^{2}+y^{2}} \\
& =\left(\xi^{2}+1\right) \frac{y}{(x-\xi)^{2}+y^{2}}
\end{aligned}
$$

which gives the result.
4. Let u be a harmonic function on the upper half plane, which is continuous on the real axis. Let U be the restriction of u to the real axis and let $P_{U}(z)$ be the Poisson integral. Then $u-P_{U}$ is harmonic and zero on the real axis. Now suppose that u is bounded. Pick $\epsilon>0$ and consider

$$
v(z)=u(z)-P_{U}(z)-\epsilon \operatorname{Im}(\sqrt{i z})
$$

Note that for $\operatorname{Im} z \geq 0$, the argument of $i z$ lies between $\pi / 2$ and $3 \pi / 2$ so that $\sqrt{i z}$ is a holomorphic function and $\operatorname{Im}(\sqrt{i z})$ is harmonic and moreover the argument of $\sqrt{i z}$ lies between $\pi / 4$ and $3 \pi / 4$.
Thus v tends to zero to $-\infty$ as z tends to ∞. Consider the region from $-R$ to R along the real axis and a semicircle of radius R to R to $-R$. The maximum of $v(z)$ occurs on the boundary. If R is large enough the maximum is on the real axis and so the maximum is zero.
It follows that

$$
u-P_{U} \leq \epsilon \operatorname{Im}(\sqrt{i z}) \leq 0
$$

Letting ϵ go to zero, we get

$$
u \leq P_{U}
$$

Replacing u by $-u$ we get the reverse inequality

$$
P_{U} \leq u
$$

But then $u=P_{U}$, as required.

