MODEL ANSWERS TO THE THIRD HOMEWORK

1. Since f is real on the real axis, we have

$$
f(\bar{z})=\bar{f}(z),
$$

by the reflection principle. On the other hand, as f is purely imaginary on the imaginary axis, $g(z)=i f(-i z)$ is real on the real axis, so that g also satisfies

$$
g(\bar{z})=\bar{g}(z),
$$

by the reflection principle. It follows that

$$
f(-x+i y)=-u+i v
$$

where $f(z)=u+i v$. Thus

$$
f(-z)=f(-x-i y)=\bar{f}(-x+i y)=-f(x+i y)=-f(z)
$$

so that f is odd.
2. (i) Let

$$
R(z)=\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9} .
$$

Then $R(z)$ is a rational function with a double zero at infinity. The zeroes of the denominator are

$$
0=z^{4}+10 z^{2}+9=\left(z^{2}+1\right)\left(z^{2}+9\right)
$$

so that $R(z)$ has simple poles at $z= \pm i$ and $z= \pm 3 i$. We integrate $R(z)$ around the standard contour from $-R$ to R along the real axis and along a semicircle of radius R in the upper half plane. As the radius R tends to infinity the integral along the semicircle goes to zero. If $R>3$ then the contour goes around all poles in the upper half plane which are at i and $3 i$. The residue at i is

$$
\frac{i^{2}-i+2}{(i+i)\left(i^{2}+9\right)}=\frac{1-i}{16 i} .
$$

The residue at $3 i$ is

$$
\frac{(3 i)^{2}-3 i+2}{(3 i+3 i)\left((3 i)^{2}+1\right)}=\frac{7+3 i}{48 i} .
$$

Taking the limit as R goes to infinity by the residue theorem we get

$$
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} \mathrm{~d} x=2 \pi i\left(\frac{1-i}{16 i}+\frac{7+3 i}{48 i}\right)=\frac{5 \pi}{12}
$$

(ii) This is done in the model answers to the final of 220 A but just for practice let's pick a different contour. We start just above the real axis go around a big circle of radius R centred at the origin end just below the real axis go parallel to the real axis almost to the origin, describe a small circle of radius ρ centred at the origin clockwise and go back along the x-axis.
It is straightforward to check that the integral along the big circle goes to zero as R goes to infinity and the integral along the small circle also goes to zero as ρ goes to zero.
Let

$$
I=\int_{0}^{\infty} \frac{x^{1 / 3} \mathrm{~d} x}{1+x^{2}}
$$

We define $z^{1 / 3}$ using a branch of the logarithm which excludes the positive real axis and the argument θ satisfies $0<\theta<2 \pi$. If $z=r e^{i \theta}$ then $z^{1 / 3}=r^{1 / 3} e^{i \theta / 3}$. In the limit, on the upper path we have

$$
z^{1 / 3}=x^{1 / 3}
$$

and on the lower path we have

$$
z^{1 / 3}=x^{1 / 3} e^{2 \pi i / 3}=x^{1 / 3}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}_{i}\right) .
$$

Thus the integral over the whole contour converges to

$$
\left(\frac{3}{2}-\frac{\sqrt{3}}{2} i\right) I .
$$

There are simple poles at $\pm i$.

$$
i^{1 / 3}=e^{i \pi / 6}=\frac{1}{2}+\frac{\sqrt{3}}{2} i .
$$

and so the residue at i is

$$
\frac{i^{1 / 3}}{i+i}=\frac{1}{2 i}\left(\frac{\sqrt{3}}{2}+i \frac{1}{2}\right)
$$

On the other hand

$$
(-i)^{1 / 3}=e^{i \pi / 2}=i
$$

and so the residue at $-i$ is

$$
\frac{(-i)^{1 / 3}}{-i-i_{2}}=\frac{-i}{2 i}
$$

Therefore by the residue theorem we have

$$
\left(\frac{3}{2}-\frac{\sqrt{3}}{2} i\right) I=\frac{2 \pi i}{2 i}\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i-i\right)=\pi\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) .
$$

Thus

$$
\int_{0}^{\infty} \frac{x^{1 / 3} \mathrm{~d} x}{1+x^{2}}=\frac{\pi}{\sqrt{3}}
$$

(iii) Let's try to integrate by parts,

$$
\int_{0}^{\infty} \log \left(1+x^{2}\right) \frac{\mathrm{d} x}{x^{1+\alpha}}=\frac{1}{\alpha} \int_{0}^{\infty} \frac{x^{1-\alpha} \mathrm{d} x}{\left(1+x^{2}\right)}
$$

There are two cases. If $\alpha=1$ then consider the rational function

$$
R(z)=\frac{1}{1+z^{2}} .
$$

We integrate $R(z)$ around the standard contour from $-R$ to R along the real axis and along a semicircle of radius R in the upper half plane. As the radius R tends to infinity the integral along the semicircle goes to zero. If $R>1$ then the contour goes around the only pole in the upper half plane which is at i.
The residue at i is

$$
\frac{1}{i+i}=\frac{1}{2 i}
$$

Taking the limit as R goes to infinity by the residue theorem we get

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} \mathrm{~d} x=2 \pi i\left(\frac{1}{2 i}\right)=\pi
$$

If $\alpha \neq 1$ the integral

$$
I=\int_{0}^{\infty} \frac{x^{1-\alpha} \mathrm{d} x}{\left(1+x^{2}\right)}
$$

is very similar the one in part (ii). Let's integrate over the same contour and use the same branch of the logarithm. The integral over the circle of radius R still goes to zero as R goes to infinity. The integral over the circle of radius ρ goes to zero as ρ goes to zero as the length of the path is proportional to ρ and the integrand is proportional to $\rho^{1-\alpha}$. We define $z^{1-\alpha}$ using a branch of the logarithm which excludes the positive real axis and the argument θ satisfies $0<\theta<2 \pi$. If $z=r e^{i \theta}$ then $z^{1-\alpha}=r^{1-\alpha} e^{i(1-\alpha) \theta}$. In the limit, on the upper path we have

$$
z^{1-\alpha}=x^{1-\alpha}
$$

and on the lower path we have

$$
z^{1-\alpha}=x^{1-\alpha} e^{2(1-\alpha) \pi i}
$$

Thus the integral over the whole contour converges to

$$
\left(1-e^{2(1-\alpha) \pi i}\right) I
$$

There are simple poles at $\pm i$.

$$
i^{1-\alpha}=e^{(1-\alpha) \pi i / 2}
$$

and so the residue at i is

$$
\frac{i^{1-\alpha}}{i+i}=\frac{1}{2 i} e^{(1-\alpha) \pi i / 2}
$$

On the other hand

$$
(-i)^{1-\alpha}=e^{(1-\alpha) 3 \pi i / 2}
$$

and so the residue at $-i$ is

$$
\frac{(-i)^{1-\alpha}}{-i-i}=\frac{-e^{(1-\alpha) 3 \pi i / 2}}{2 i}
$$

Therefore by the residue theorem we have
$\left(1-e^{2(1-\alpha) \pi i}\right) I=\frac{2 \pi i}{2 i}\left(e^{(1-\alpha) \pi i / 2}-e^{(1-\alpha) 3 \pi i / 2}\right)=\pi\left(e^{(1-\alpha) \pi i / 2}-e^{(1-\alpha) 3 \pi i / 2}\right)$.
Thus

$$
\begin{aligned}
\int_{0}^{\infty} \log \left(1+x^{2}\right) \frac{\mathrm{d} x}{x^{1+\alpha}} & =\frac{\pi}{\alpha} \frac{\left(e^{(1-\alpha) \pi i / 2}-e^{-(1-\alpha) \pi i / 2}\right)}{\left(e^{(1-\alpha) \pi i}-e^{-(1-\alpha) \pi i}\right)} \\
& =\frac{\pi}{\alpha} \frac{\sin (1-\alpha) \pi / 2}{\sin (1-\alpha) \pi} \\
& =\frac{\pi}{2 \alpha} \frac{1}{\cos (1-\alpha) \pi / 2}
\end{aligned}
$$

(iv)

$$
\int_{|z|=\rho} \frac{|\mathrm{d} z|}{|z-a|^{2}}=\int_{|z|=\rho} \frac{i \rho \mathrm{~d} z}{z(z-a)(\rho / z-\bar{a})}=\int_{|z|=\rho} \frac{-i \rho \mathrm{~d} z}{(z-a)(\rho-\bar{a} z)}
$$

The rational function

$$
\frac{-i \rho}{(z-a)(\rho-\bar{a} z)}
$$

has poles at $z=a$ and $z=\rho / \bar{a}$. Only one is inside the circle of radius ρ. The residue as a is

$$
\frac{-i \rho}{\rho-|a|^{2}}
$$

and the residue as ρ / \bar{a} is

$$
\frac{-i \rho}{\rho / \bar{a}-a}=\frac{-i \bar{a} \rho}{\rho-|a|^{2}}
$$

By the residue theorem

$$
\int_{|z|=\rho} \frac{|\mathrm{d} z|}{|z-a|^{2}}= \begin{cases}\frac{2 \pi \rho}{\rho-\left.|a|\right|^{2}} & \text { if }|a|<\rho \\ \frac{2 \bar{a} \bar{\rho}}{\rho-|a|^{2}} & \text { if }|a|>\rho\end{cases}
$$

