
MODEL ANSWERS TO THE THIRD HOMEWORK

1. Since f is real on the real axis, we have

f(z̄) = f̄(z),

by the reflection principle. On the other hand, as f is purely imaginary
on the imaginary axis, g(z) = if(−iz) is real on the real axis, so that
g also satisfies

g(z̄) = ḡ(z),

by the reflection principle. It follows that

f(−x+ iy) = −u+ iv

where f(z) = u+ iv. Thus

f(−z) = f(−x− iy) = f̄(−x+ iy) = −f(x+ iy) = −f(z),

so that f is odd.
2. (i) Let

R(z) =
z2 − z + 2

z4 + 10z2 + 9
.

Then R(z) is a rational function with a double zero at infinity. The
zeroes of the denominator are

0 = z4 + 10z2 + 9 = (z2 + 1)(z2 + 9),

so that R(z) has simple poles at z = ±i and z = ±3i. We integrate
R(z) around the standard contour from −R to R along the real axis
and along a semicircle of radius R in the upper half plane. As the
radius R tends to infinity the integral along the semicircle goes to zero.
If R > 3 then the contour goes around all poles in the upper half plane
which are at i and 3i. The residue at i is

i2 − i+ 2

(i+ i)(i2 + 9)
=

1− i
16i

.

The residue at 3i is

(3i)2 − 3i+ 2

(3i+ 3i)((3i)2 + 1)
=

7 + 3i

48i
.

Taking the limit as R goes to infinity by the residue theorem we get∫ ∞
−∞

x2 − x+ 2

x4 + 10x2 + 9
dx = 2πi

(
1− i
16i

+
7 + 3i

48i

)
=

5π

12
.
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(ii) This is done in the model answers to the final of 220A but just for
practice let’s pick a different contour. We start just above the real axis
go around a big circle of radius R centred at the origin end just below
the real axis go parallel to the real axis almost to the origin, describe
a small circle of radius ρ centred at the origin clockwise and go back
along the x-axis.
It is straightforward to check that the integral along the big circle goes
to zero as R goes to infinity and the integral along the small circle also
goes to zero as ρ goes to zero.
Let

I =

∫ ∞
0

x1/3 dx

1 + x2
.

We define z1/3 using a branch of the logarithm which excludes the
positive real axis and the argument θ satisfies 0 < θ < 2π. If z = reiθ

then z1/3 = r1/3eiθ/3. In the limit, on the upper path we have

z1/3 = x1/3

and on the lower path we have

z1/3 = x1/3e2πi/3 = x1/3

(
−1

2
+

√
3

2
i

)
.

Thus the integral over the whole contour converges to(
3

2
−
√

3

2
i

)
I.

There are simple poles at ±i.

i1/3 = eiπ/6 =
1

2
+

√
3

2
i.

and so the residue at i is

i1/3

i+ i
=

1

2i

(√
3

2
+ i

1

2

)
.

On the other hand

(−i)1/3 = eiπ/2 = i

and so the residue at −i is

(−i)1/3

−i− i
=
−i
2i
.
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Therefore by the residue theorem we have(
3

2
−
√

3

2
i

)
I =

2πi

2i

(√
3

2
+

1

2
i− i

)
= π

(√
3

2
− 1

2
i

)
.

Thus ∫ ∞
0

x1/3 dx

1 + x2
=

π√
3
.

(iii) Let’s try to integrate by parts,∫ ∞
0

log(1 + x2)
dx

x1+α
=

1

α

∫ ∞
0

x1−αdx

(1 + x2)
.

There are two cases. If α = 1 then consider the rational function

R(z) =
1

1 + z2
.

We integrate R(z) around the standard contour from −R to R along
the real axis and along a semicircle of radius R in the upper half plane.
As the radius R tends to infinity the integral along the semicircle goes
to zero. If R > 1 then the contour goes around the only pole in the
upper half plane which is at i.
The residue at i is

1

i+ i
=

1

2i
.

Taking the limit as R goes to infinity by the residue theorem we get∫ ∞
−∞

1

1 + x2
dx = 2πi

(
1

2i

)
= π.

If α 6= 1 the integral

I =

∫ ∞
0

x1−αdx

(1 + x2)

is very similar the one in part (ii). Let’s integrate over the same contour
and use the same branch of the logarithm. The integral over the circle
of radius R still goes to zero as R goes to infinity. The integral over
the circle of radius ρ goes to zero as ρ goes to zero as the length of the
path is proportional to ρ and the integrand is proportional to ρ1−α.
We define z1−α using a branch of the logarithm which excludes the
positive real axis and the argument θ satisfies 0 < θ < 2π. If z = reiθ

then z1−α = r1−αei(1−α)θ. In the limit, on the upper path we have

z1−α = x1−α

and on the lower path we have

z1−α = x1−αe2(1−α)πi.
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Thus the integral over the whole contour converges to

(1− e2(1−α)πi)I.

There are simple poles at ±i.
i1−α = e(1−α)πi/2,

and so the residue at i is

i1−α

i+ i
=

1

2i
e(1−α)πi/2.

On the other hand

(−i)1−α = e(1−α)3πi/2.

and so the residue at −i is

(−i)1−α

−i− i
=
−e(1−α)3πi/2

2i
.

Therefore by the residue theorem we have

(1−e2(1−α)πi)I =
2πi

2i

(
e(1−α)πi/2 − e(1−α)3πi/2

)
= π

(
e(1−α)πi/2 − e(1−α)3πi/2

)
.

Thus ∫ ∞
0

log(1 + x2)
dx

x1+α
=
π

α

(
e(1−α)πi/2 − e−(1−α)πi/2

)
(e(1−α)πi − e−(1−α)πi)

=
π

α

sin(1− α)π/2

sin(1− α)π

=
π

2α

1

cos(1− α)π/2
.

(iv)∫
|z|=ρ

|dz|
|z − a|2

=

∫
|z|=ρ

iρ dz

z(z − a)(ρ/z − ā)
=

∫
|z|=ρ

−iρ dz

(z − a)(ρ− āz)
.

The rational function
−iρ

(z − a)(ρ− āz)

has poles at z = a and z = ρ/ā. Only one is inside the circle of radius
ρ. The residue as a is

−iρ
ρ− |a|2

and the residue as ρ/ā is

−iρ
ρ/ā− a

=
−iāρ
ρ− |a|2

.
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By the residue theorem∫
|z|=ρ

|dz|
|z − a|2

=

{
2πρ
ρ−|a|2 if |a| < ρ
2πāρ
ρ−|a|2 if |a| > ρ.
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