MODEL ANSWERS TO THE FOURTH HOMEWORK

1. Consider the family

$$\mathfrak{G} = \{ g = e^{-f} \, | \, f \in \mathfrak{F} \}.$$

If $g \in \mathfrak{G}$ then $|g| \leq 1$. Then \mathfrak{G} is uniformly bounded by 1. It follows that \mathfrak{G} is a normal family in the usual sense. If f_1, f_2, \ldots is a sequence of elements of \mathfrak{F} then let $g_i = e^{-f_i}$. We have that g_1, g_2, \ldots is a sequence of elements of \mathfrak{G} . Possibly passing to a subsequence we may assume that they converge to a holomorphic function g, uniformly on compact subsets.

As g_1, g_2, \ldots are nowhere zero, Hurwitz implies that the limit is either identically zero or it is nowhere zero. In the former case it follows that the real part of f_1, f_2, \ldots is going to infinity so that f_1, f_2, \ldots tend to infinity, uniformly on compact subsets.

Now suppose that g is nowhere zero. As U is the union of finitely many simply connected regions there is no harm in assuming that U is simply connected so that we may define a branch of the logarithm $\log z$ on U. Let $h_i(z) = \log g_i(z)$. The difference $h_i(z) - f_i(z)$ is both continuous and a multiple of $2\pi i$. Thus it is constant. Note that $h_i(z)$ tends to the holomorphic function $h(z) = \log q(z)$ uniformly on compact subsets.

There are two cases. The difference $h_i(z) - g_i(z)$ is bounded or not. If the difference is bounded then it takes on only finitely many values; possibly passing to a subsequence we may assume that it is constant. Rechoosing the branch of our logarithm we may assume that $f_i(z) = h_i(z)$ and $f_i(z)$ tends to the holomorphic function f(z) = h(z) uniformly on compact subsets.

Now suppose that that the difference is unbounded. Possibly passing to a subsequence we may assume that the imaginary part of $f_i(z)$ tends to infinity, so that the difference of the imaginary part of $f_i(z)$ and h(z)tends to infinity. But then $f_i(z)$ tends to infinity, uniformly on compact subsets, since the imaginary part of h(z) is bounded on compact subsets.

2. If we work in the disc Δ then the sequence of functions $f_n(z) = z^n$ tends uniformly on compact subsets to 0; if we work in the complement of the closed unit disc |z| > 1 then the same sequence tends uniformly to ∞ .

Now suppose that the region contains a point $|z_0| = 1$. Then the region contains a small ball about this point. If we take a point in this ball

such that |z| > 1 then $f_n(z)$ tends to infinity. But if we choose a point |z| < 1 then $f_n(z)$ tends to zero. Therefore this is not a normal family. 3. Suppose that \mathfrak{F} is a normal family. If f is not a polynomial then f has an essential singularity at ∞ . Pick $r_1 < s_1 < s_2 < r_2$, let $s = s_2/s_1$ and let $k_i = s^i$. Let $g(z) = k_i z$. Then

$$E_n = \{ g(z) \in \mathbb{C} \mid s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} \} = \{ z \in \mathbb{C} \mid s^i s_1 \le |z| \le s_2 \} \}$$

The union of these annuli is the set

$$\{z \in \mathbb{C} \mid |z| > s_1\},\$$

 $s^{i}s_{2}$ }.

a neighbourhood of ∞ .

By Casorati-Weierstrass $f_i(z) = f(k_i z)$ is neither bounded nor is the limit constant. Thus \mathfrak{F} is not a normal family.

Now suppose that f(z) is a polynomial. Suppose that we have a sequence of complex numbers k_1, k_2, \ldots There are two cases. Suppose first that k_n is unbounded. Then there is a subsequence which converges to ∞ . Replacing k_1, k_2, \ldots by a subsequence we may suppose that k_1, k_2, \ldots converges to infinity. If f is constant $f_n(z) = f(k_n z)$ is constant. Otherwise $f_n(z)$ tends uniformly to infinity on the annulus. Now suppose that k_n is bounded. Then there is a convergent subsequence. Replacing k_1, k_2, \ldots by a subsequence we may suppose that k_1, k_2, \ldots converges to $k \in \mathbb{C}$. In this case $f_n(z) = f(k_n z)$ converges to f(kz) uniformly on the annulus.

4. By assumption there is a sequence of elements f_1, f_2, \ldots of \mathfrak{F} and a compact subset E of U such that no subsequence converges uniformly on E. For each $k \in \mathbb{N}$ we can consider the subdivision of \mathbb{C} into squares of width 1/k with sides parallel to the real and imaginary axes and one corner at the origin, so that the vertices of the squares are at the points a/k + b/ki, where a and b are integers. This induces a subdivision of E and the sequence cannot converge on one of the finitely many subsets E_k of this subdivision. In this way we construct a nested sequence of compact subsets on which f_1, f_2, \ldots does not converge. By compactness we may find a point z_0 common to each E_k . Suppose that V is an open neighbourhood of z_0 . Then $E_k \subset V$ for some k and so f_1, f_2, \ldots is not a normal family when restricted to V.

5. Consider the map $g: U \longrightarrow \Delta$ given by $g(z) = \bar{f}(\bar{z})$. Then g is biholomorphic, $g(z_0) = 0$ and $g'(z_0) > 0$. Thus g = f by uniqueness and so $\bar{f}(z) = \bar{f}(\bar{z}) = f(\bar{z})$.