## PRACTICE PROBLEMS FOR THE MIDTERM

Here are some practice problems for the first midterm culled from various locations (several problems are a bit more involved than the midterm problems but are hopefully useful for review):

1. Suppose that

$$
u: \mathbb{C}-\{0\} \longrightarrow \mathbb{R},
$$

is a harmonic function. Show that $u$ is surjective.
2. Let $\mathbb{H}$

$$
\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}
$$

be the upper half plane and let $f$ denote the principal branch of the logarithm restricted to $\mathbb{H}$. Consider the sequence of iterates

$$
f, \quad f \circ f, \quad f \circ f \circ f, \ldots,
$$

Is this sequence of functions locally bounded in $\mathbb{H}$ ? Explain.
3. State and prove Hadamard's three-circles theorem.
4. Let $u$ be a bounded harmonic function in the first quadrant,

$$
U=\{z \in \mathbb{C} \mid \operatorname{Re} z>0, \operatorname{Im} z>0\} .
$$

Suppose that

$$
\lim _{z \rightarrow x} u(z)=1,
$$

for all $x \in(0,1)$ and otherwise

$$
\lim _{z \rightarrow z_{0}} u(z)=0
$$

where $z_{0}$ is any other part of the boundary.
What is

$$
u\left(\frac{1+i}{\sqrt{2}}\right) ?
$$

5. Using Cauchy's integral formula, write down the value of a holomorphic function $f(z)$ where $|z|<1$ in terms of a contour integral around the unit circle, $\zeta=e^{i \theta}$.
By considering the point $1 / \bar{z}$ show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\zeta) \frac{1-|z|^{2}}{|\zeta-z|^{2}} \mathrm{~d} \theta
$$

By setting $z=r e^{i \alpha}$, show that for any harmonic function $u(r, \alpha)$,

$$
u(r, \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{1-r^{2}}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta
$$

Assuming that the harmonic conjugate $v(r, \theta)$ can be written as

$$
v(r, \alpha)=v(0)+\frac{1}{\pi} \int_{0}^{2 \pi} u(1, \theta) \frac{r \sin (\alpha-\theta)}{1-2 r \cos (\alpha-\theta)+r^{2}} \mathrm{~d} \theta
$$

deduce that

$$
f(z)=i v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} u(1, \theta) \frac{\zeta+z}{\zeta-z} \mathrm{~d} \theta
$$

6. Show that if $u$ is a harmonic function on the unit disc $\Delta$ continuous on the closure and $u$ agrees with a real-valued polynomial on the boundary then $u$ is a real-valued polynomial.
7. Give the definition of Euler's constant.
8. Give the definition of the Gamma function.
