FINAL EXAM

MATH 103B, UCSD, SPRING 16

You have three hours.

There are 11 problems, and the total number of points is 155 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad

Problem	Points	Score
1	30	
2	20	
3	15	
4	10	
5	10	
6	15	
7	10	
8	10	
9	10	
10	15	
11	10	
12	10	
13	10	
14	10	
15	10	
Total	155	

1. (30pts) (i) Give the definition of a left coset of a subgroup H of a group G.
A subset of the form

$$
g H=\{g h \mid h \in H\}
$$

for any $g \in G$.
(ii) Give the definition of the kernel of a homomorphism of groups. If $\phi: G \longrightarrow G^{\prime}$ is a homomorphism of groups then the kernel is the inverse image of the identity.
(iii) Give the definition of a normal subgroup H of a group G. H is a normal subgroup if the left cosets are equal to the right cosets, $g H=H g$.
(iv) Give the definition of a unit in a ring R with unity. $u \in R$ is a unit if u has an inverse v, so that, $u v=v u=1$.
(v) Give the definition of the Euler phi-function. $\varphi(n)$ is the number of integers between 0 and $n-1$ coprime to n.
(vi) Give the definition of an irreducible polynomial over a field. A non-zero polynomial $f(x)$ over a field F is irreducible if whenever $f(x)=g(x) h(x)$ then one of $g(x)$ or $h(x)$ has degree equal to the degree of $f(x)$.
2. (20pts) (i) Find all cosets of $\langle 4\rangle$ inside the group \mathbb{Z}_{12}.
$\langle 4\rangle=\{0,4,8\} \quad 1+\langle 4\rangle=\{1,5,9\} \quad 2+\langle 4\rangle=\{2,6,10\} \quad$ and $3+\langle 4\rangle=\{3,5,11\}$
(ii) Let $\sigma=(1,2,4,5)(3,6)$ in S_{6}. Find the index of $\langle\sigma\rangle$ in S_{6}. σ has order 4 , so that $|\langle\sigma\rangle|=4$. So by Lagrange the index is

$$
\frac{\left|S_{6}\right|}{|\langle\sigma\rangle|}=\frac{6!}{4}=6 \cdot 5 \cdot 3 \cdot 2=180
$$

(iii) Find the order of $(3,6,12,16)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$.

3 has order 4 in $\mathbb{Z}_{4} ; 6$ has order $2=12 / 6$ in $\mathbb{Z}_{12} ; 12$ has order $5=20 / 4$ in $\mathbb{Z}_{20} ; 16$ has order $3=24 / 8$ in \mathbb{Z}_{24}. The order of $(3,6,12,16)$ in the product is the lowest common multiple of $4,2,5$ and 3 , which is 60 .
(iv) Find $\phi(14)$, if $\phi: \mathbb{Z} \longrightarrow S_{8}$ is a group homomorphism and $\phi(1)=$ $(2,5)(1,4,6,7)$.
$\phi(1)$ has order 4 . Thus

$$
\begin{aligned}
\phi(14) & =\phi(12+2) \\
& =\phi(12) \phi(2) \\
& =\phi(4)^{3} \phi(1) \phi(1) \\
& =(2,5)(1,4,6,7)(2,5)(1,4,6,7) \\
& =(1,6)(4,7)
\end{aligned}
$$

3. (15pts) (i) State the fundamental theorem of finitely generated abelian groups.
Every finitely generated abelian group is isomorphic to a product

$$
\mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{a_{n}}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}
$$

where $p_{1}, p_{2}, \ldots, p_{n}$ are prime numbers and $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers. The direct product is unique, up to re-ordering the factors, so that the number of copies of \mathbb{Z} and the prime powers are unique.
(ii) Find all abelian groups of order 1400, up to isomorphism.

$$
1400=100 \cdot 14=2^{2} \cdot 5^{2} \cdot 2 \cdot 7=2^{3} \cdot 5^{2} \cdot 7
$$

Thus
(1) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$
(2) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7}$
(3) $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$
(4) $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7}$
(5) $\mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7}$
(6) $\mathbb{Z}_{8} \times \mathbb{Z}_{25} \times \mathbb{Z}_{7}$,
is a complete list of abelian groups of order 1400, up to isomorphism.
4. (10pts) Is there a homomorphism $S_{6} \longrightarrow \mathbb{Z}_{7}$ which is onto? If there is one, give an example and if there is not, explain why not. There is no onto homomorphism. Suppose not, suppose that $\phi\left[S_{6}\right]=$ \mathbb{Z}_{7}. By the first isomorphism theorem \mathbb{Z}_{7} is isomorphic to S_{6} / K, where K is the kernel of ϕ. By Lagrange this has $6!/ k$ elements, where k is the order of K. But 7 does not divide 6 !, so this is not possible.
5. (10pts) Show that A_{n} is a normal subgroup of S_{n} and compute S_{n} / A_{n}.
Let $\phi: S_{n} \longrightarrow \mathbb{Z}_{2}$ be the map which sends the permutation σ to 0 if σ is even and 1 if σ is odd. We check that ϕ is a group homomorphism. We have to check that

$$
\phi(\sigma \tau)=\phi(\sigma)+\phi(\tau)
$$

There are four cases, depending on the parity of σ and τ. If σ and τ are even then then so is $\sigma \tau$, the LHS is 0 and the RHS is $0+0=0$.
If one of σ and τ is odd and the other is even then $\sigma \tau$ is odd. The LHS is 1 and the RHS is $0+1=1$.
If both σ and τ are odd then $\sigma \tau$ is even. The LHS is 0 and the RHS is $1+1=0$.
Therefore ϕ is a group homomorphism. The kernel is A_{n} and so A_{n} is a normal subgroup. The quotient is isomorphic to \mathbb{Z}_{2} by the first isomorphism theorem.
6. (15pts) (i) Let $\phi: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ be a group homomorphism. If $\phi(1)=(a, b)$ then what is $\phi(2)$? $\phi(3)$? $\phi(n)$? $\phi(2)=\phi(1+1)=\phi(1)+\phi(1)=(a, b)+(a, b)=(2 a, 2 b) . \phi(3)=$ $\phi(2+1)=\phi(2)+\phi(1)=(2 a, 2 b)+(a, b)=(3 a, 3 b)$. More generally $\phi(n)=(n a, n b)$ by induction.
(ii) Let $\phi: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ be a ring homomorphism. If $\phi(1)=(a, b)$ then what are the possible values of a and b ?
$1=1 \cdot 1$ so that $(a, b)=\phi(1)=\phi(1 \cdot 1)=\phi(1) \cdot \phi(1)=(a, b)(a, b)=$ $\left(a^{2}, b^{2}\right)$. So $a^{2}=a$ and $b^{2}=b$. It follows that a and b are individually either zero or one.
(iii) Describe all ring homomorphisms $\phi: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$.

By part (i) it suffices to determine all possible values of a and b.
There are four possible choices of a and $b, a=b=0 ; a=1, b=0 ; a=$ $0, b=1$ and $a=b=1$. We check that these are ring homomorphisms. In the first case we have the zero homomorphism, $n \longrightarrow(0,0)$. The next two cases are inclusion into either factor, $n \longrightarrow(n, 0)$ and $n \longrightarrow$ $(0, n)$. The last case is the inclusion $n \longrightarrow(n, n)$ which is a ring homomorphism.
7. (10pts) Find a generator of the group of units of \mathbb{Z}_{17}.

The group of units has 16 elements. As the order of any element divides 16 by Lagrange, the possible orders are $1,2,4,8$ and 16 . If $a \in \mathbb{Z}_{17}$ has order at most 8 then $a^{8}=1 \bmod 17$. So it suffices to find a such that $a^{8} \neq 1 \bmod 17$. We apply trial and error. If $a=2$ then $2^{2}=4,2^{4}=16=-1$ and so $2^{8}=1$, no good. $3^{2}=9,3^{3}=27=10$, $3^{4}=30=13=-4$ and $3^{8}=(-4)^{2}=16=-1$. So 3 is a generator.
8. (10pts) Find the remainder of 37^{49} when it is divded by 7 .
$37=2 \bmod 7$ and so we just need to compute 2^{49}.
Fermat implies that $2^{6}=1 \bmod 7.49=48+1=8 \cdot 6+1$. Thus

$$
\begin{aligned}
37^{49} & =2^{49} \\
& =2^{8 \cdot 6+1} \\
& =\left(2^{6}\right)^{8} \cdot 2 \\
& =2 \bmod 7 .
\end{aligned}
$$

9. (10pts) If $f(x)=x^{4}+5 x^{3}-3 x^{2}$ and $g(x)=5 x^{2}-x+2$ then find $q(x)$ and $r(x) \in \mathbb{Z}_{11}[x]$ such that $f(x)=q(x) g(x)+r(x)$, by applying the division algorithm.
Applying the division algorithm we get

$$
\begin{aligned}
f(x) & =q(x) g(x)+r(x) \\
x^{4}+5 x^{3}-3 x^{2} & =\left(9 x^{2}+5 x+10\right)\left(5 x^{2}-x+2\right)+2 .
\end{aligned}
$$

10. (15pts) (i) Express $x^{3}+2 x+3$ as a product of irreducible polynomials over \mathbb{Z}_{5}.
Let $f(x)=x^{3}+2 x+3$. We check for zeroes of $f(x)$
$f(0)=3 f(1)=1 f(2)=8+4+3=0 f(3)=27+3+6=1$ and $f(4)=64+8+3=0$.
Thus $\alpha=2$ and $\alpha=4$ are zeroes. Thus $f(x)$ has two linear factors. It must have another one as it is a cubic. The product of the zeroes is $-3=2$ and the product of 2 and 4 is 3 . So the third zero is $2 / 3=4$. Thus

$$
x^{3}+2 x+3=(x-2)(x-4)^{2}=(x+3)(x+1)^{2} .
$$

(ii) Show that $x^{2}+6 x+12$ is irreducible over \mathbb{Q}.

There are many ways to do this. Probably the easiest is to apply Eisenstein with $p=3$.
(iii) Is $x^{2}+6 x+12$ irreducible over \mathbb{R} ? Over \mathbb{C} ?

The discriminant is $36-48<0$. Thus $x^{2}+6 x+12$ has two complex conjugate roots and no real roots. It follows that $x^{2}+6 x+12$ is irreducible over \mathbb{R} and reducible over \mathbb{C}.
11. (10pts) State Eisenstein's criteria. Prove that the polynomial $f(x)$ $3 x^{13}-15 x^{12}+25 x^{11}+30 x^{10}-40 x^{9}+10 x^{8}+15 x^{7}-5 x^{6}-30 x^{5}+10 x^{4}+15 x^{3}-5 x^{2}+20 x+5$, is an irreducible element of $\mathbb{Q}[x]$.
Let $f(x)$ be a polynomial with integer coefficients. Suppose that p is a prime that divides all but the leading coefficient (so that p does not divide the leading coefficient) and p^{2} does not divide the constant coefficient. Then $f(x)$ is irreducible over \mathbb{Q}.
Apply Eisenstein with $p=5$.

Bonus Challenge Problems

12. (10pts) Prove Lagrange's theorem.

Let H be a subgroup of the finite group G. If $g \in G$ define a map

$$
\psi: H \longrightarrow g H \quad \text { by sending } \quad h \longrightarrow g h .
$$

Note that ψ has an inverse map,

$$
\phi: g H \longrightarrow H \quad \text { by sending } \quad g h \longrightarrow h .
$$

Therefore ψ is one to one and onto. Since the left cosets of H in G are a partition of G and every left coset has the same size as H, we have

$$
|G|=|H|[G: H] .
$$

13. (10pts) Find all irreducible polynomials of degree at most 3 over \mathbb{Z}_{3}.
We first find all monic polynomials of degree at most 3. Every linear polynomial is irreducible;

$$
x \quad x+1 \quad \text { and } \quad x+2 .
$$

Multiplying by 2 we get

$$
2 x \quad 2 x+2 \quad \text { and } \quad 2 x+1 .
$$

A general monic quadratic polynomial looks like $x^{2}+a x+b$. This is irreducible if it has no zeroes. $b \neq 0$ if $\alpha=0$ is not a zero.

$$
f(1)=a+b+1 \quad \text { and } \quad f(2)=4+2 a+b=2 a+b+1 .
$$

Thus $b \neq 0, a+b \neq 2$ and $2 a+b \neq 2$. The possibilities are

$$
x^{2}+1 \quad x^{2}+x+2 \quad \text { and } \quad x^{2}+2 x+2 .
$$

Multiplying by 2 we get

$$
2 x^{2}+2 \quad 2 x^{2}+2 x+1 \quad \text { and } \quad 2 x^{2}+x+1
$$

A general monic cubic polynomial looks like $x^{3}+a x^{2}+b x+c$. This is irreducible if it has no zeroes. $c \neq 0$ if $\alpha=0$ is not a zero.
$f(1)=a+b+c+1 \quad$ and $\quad f(2)=8+4 a+2 b+c=a+2 b+c+2$.
Thus $c \neq 0, a+b+c \neq 2$ and $a+2 b+c \neq 1$. The possibilities are
$x^{3}+2 x+1 \quad x^{3}+x^{2}+2 x+1 \quad x^{3}+2 x^{2}+1 \quad$ and $\quad x^{3}+2 x^{2}+x+1$,
when $c=1$ and
$x^{3}+2 x+2 \quad x^{3}+x^{2}+2 \quad x^{3}+x^{2}+x+2 \quad$ and $\quad x^{3}+2 x^{2}+2 x+2$,
when $c=2$.
Multiplying by 2 we get
$2 x^{3}+x+2 \quad 2 x^{3}+2 x^{2}+x+2 \quad 2 x^{3}+x^{2}+2 \quad$ and $\quad 2 x^{3}+x^{2}+2 x+2$,
and
$2 x^{3}+x+1 \quad 2 x^{3}+2 x^{2}+1 \quad 2 x^{3}+2 x^{2}+2 x+1 \quad$ and $\quad 2 x^{3}+x^{2}+x+1$.
14. (10pts) Show that every finite subroup G of the multiplicative group of a field F is cyclic.
See the lecture notes.
15. (10pts) Show that if p is a prime then $x^{p-1}+x^{p-2}+\cdots+1$ is an irreducible polynomial over \mathbb{Q}.
See the lecture notes.

