
FINAL EXAM

MATH 103B, UCSD, SPRING 16

You have three hours.

There are 11 problems, and the total number of

points is 155. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Problem Points Score

1 30

2 20

3 15

4 10

5 10

6 15

7 10

8 10

9 10

10 15

11 10

12 10

13 10

14 10

15 10

Total 155
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1. (30pts) (i) Give the definition of a left coset of a subgroup H of a

group G.
A subset of the form

gH = { gh |h ∈ H }

for any g ∈ G.

(ii) Give the definition of the kernel of a homomorphism of groups.

If φ : G −→ G′ is a homomorphism of groups then the kernel is the
inverse image of the identity.

(iii) Give the definition of a normal subgroup H of a group G.
H is a normal subgroup if the left cosets are equal to the right cosets,
gH = Hg.
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(iv) Give the definition of a unit in a ring R with unity.

u ∈ R is a unit if u has an inverse v, so that, uv = vu = 1.

(v) Give the definition of the Euler phi-function.

ϕ(n) is the number of integers between 0 and n− 1 coprime to n.

(vi) Give the definition of an irreducible polynomial over a field.

A non-zero polynomial f(x) over a field F is irreducible if whenever
f(x) = g(x)h(x) then one of g(x) or h(x) has degree equal to the degree
of f(x).
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2. (20pts) (i) Find all cosets of 〈4〉 inside the group Z12.

〈4〉 = { 0, 4, 8 } 1+〈4〉 = { 1, 5, 9 } 2+〈4〉 = { 2, 6, 10 } and 3+〈4〉 = { 3, 5, 11 }

(ii) Let σ = (1, 2, 4, 5)(3, 6) in S6. Find the index of 〈σ〉 in S6.

σ has order 4, so that |〈σ〉| = 4. So by Lagrange the index is

|S6|

|〈σ〉|
=

6!

4
= 6 · 5 · 3 · 2 = 180.

(iii) Find the order of (3, 6, 12, 16) in Z4 × Z12 × Z20 × Z24.

3 has order 4 in Z4; 6 has order 2 = 12/6 in Z12; 12 has order 5 = 20/4
in Z20; 16 has order 3 = 24/8 in Z24. The order of (3, 6, 12, 16) in the
product is the lowest common multiple of 4, 2, 5 and 3, which is 60.

(iv) Find φ(14), if φ : Z −→ S8 is a group homomorphism and φ(1) =
(2, 5)(1, 4, 6, 7).
φ(1) has order 4. Thus

φ(14) = φ(12 + 2)

= φ(12)φ(2)

= φ(4)3φ(1)φ(1)

= (2, 5)(1, 4, 6, 7)(2, 5)(1, 4, 6, 7)

= (1, 6)(4, 7).
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3. (15pts) (i) State the fundamental theorem of finitely generated abelian

groups.

Every finitely generated abelian group is isomorphic to a product

Z
p
a1

1

× Z
p
a2

2

× · · · × Zp
an

n

× Z× Z× · · · × Z,

where p1, p2, . . . , pn are prime numbers and a1, a2, . . . , an are positive
integers. The direct product is unique, up to re-ordering the factors,
so that the number of copies of Z and the prime powers are unique.

(ii) Find all abelian groups of order 1400, up to isomorphism.

1400 = 100 · 14 = 22 · 52 · 2 · 7 = 23 · 52 · 7.

Thus

(1) Z2 × Z2 × Z2 × Z5 × Z5 × Z7

(2) Z2 × Z2 × Z2 × Z25 × Z7

(3) Z2 × Z4 × Z5 × Z5 × Z7

(4) Z2 × Z4 × Z25 × Z7

(5) Z8 × Z5 × Z5 × Z7

(6) Z8 × Z25 × Z7,

is a complete list of abelian groups of order 1400, up to isomorphism.
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4. (10pts) Is there a homomorphism S6 −→ Z7 which is onto? If there

is one, give an example and if there is not, explain why not.

There is no onto homomorphism. Suppose not, suppose that φ[S6] =
Z7. By the first isomorphism theorem Z7 is isomorphic to S6/K, where
K is the kernel of φ. By Lagrange this has 6!/k elements, where k is
the order of K. But 7 does not divide 6!, so this is not possible.

5. (10pts) Show that An is a normal subgroup of Sn and compute

Sn/An.

Let φ : Sn −→ Z2 be the map which sends the permutation σ to 0 if σ
is even and 1 if σ is odd. We check that φ is a group homomorphism.
We have to check that

φ(στ) = φ(σ) + φ(τ).

There are four cases, depending on the parity of σ and τ . If σ and τ
are even then then so is στ , the LHS is 0 and the RHS is 0 + 0 = 0.
If one of σ and τ is odd and the other is even then στ is odd. The LHS
is 1 and the RHS is 0 + 1 = 1.
If both σ and τ are odd then στ is even. The LHS is 0 and the RHS is
1 + 1 = 0.
Therefore φ is a group homomorphism. The kernel is An and so An

is a normal subgroup. The quotient is isomorphic to Z2 by the first
isomorphism theorem.
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6. (15pts) (i) Let φ : Z −→ Z × Z be a group homomorphism. If

φ(1) = (a, b) then what is φ(2)? φ(3)? φ(n)?
φ(2) = φ(1 + 1) = φ(1) + φ(1) = (a, b) + (a, b) = (2a, 2b). φ(3) =
φ(2 + 1) = φ(2) + φ(1) = (2a, 2b) + (a, b) = (3a, 3b). More generally
φ(n) = (na, nb) by induction.

(ii) Let φ : Z −→ Z×Z be a ring homomorphism. If φ(1) = (a, b) then
what are the possible values of a and b?
1 = 1 · 1 so that (a, b) = φ(1) = φ(1 · 1) = φ(1) · φ(1) = (a, b)(a, b) =
(a2, b2). So a2 = a and b2 = b. It follows that a and b are individually
either zero or one.

(iii) Describe all ring homomorphisms φ : Z −→ Z× Z.

By part (i) it suffices to determine all possible values of a and b.
There are four possible choices of a and b, a = b = 0; a = 1, b = 0; a =
0, b = 1 and a = b = 1. We check that these are ring homomorphisms.
In the first case we have the zero homomorphism, n −→ (0, 0). The
next two cases are inclusion into either factor, n −→ (n, 0) and n −→
(0, n). The last case is the inclusion n −→ (n, n) which is a ring
homomorphism.
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7. (10pts) Find a generator of the group of units of Z17.

The group of units has 16 elements. As the order of any element divides
16 by Lagrange, the possible orders are 1, 2, 4, 8 and 16. If a ∈ Z17

has order at most 8 then a8 = 1 mod 17. So it suffices to find a
such that a8 6= 1 mod 17. We apply trial and error. If a = 2 then
22 = 4, 24 = 16 = −1 and so 28 = 1, no good. 32 = 9, 33 = 27 = 10,
34 = 30 = 13 = −4 and 38 = (−4)2 = 16 = −1. So 3 is a generator.

8. (10pts) Find the remainder of 3749 when it is divded by 7.
37 = 2 mod 7 and so we just need to compute 249.
Fermat implies that 26 = 1 mod 7. 49 = 48 + 1 = 8 · 6 + 1. Thus

3749 = 249

= 28·6+1

= (26)8 · 2

= 2 mod 7.
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9. (10pts) If f(x) = x4 + 5x3 − 3x2 and g(x) = 5x2 − x + 2 then find

q(x) and r(x) ∈ Z11[x] such that f(x) = q(x)g(x) + r(x), by applying

the division algorithm.

Applying the division algorithm we get

f(x) = q(x)g(x) + r(x)

x4 + 5x3 − 3x2 = (9x2 + 5x+ 10)(5x2 − x+ 2) + 2.
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10. (15pts) (i) Express x3+2x+3 as a product of irreducible polynomials

over Z5.

Let f(x) = x3 + 2x+ 3. We check for zeroes of f(x)

f(0) = 3 f(1) = 1 f(2) = 8+4+3 = 0 f(3) = 27+3+6 = 1 and f(4) = 64+8+3 = 0.

Thus α = 2 and α = 4 are zeroes. Thus f(x) has two linear factors.
It must have another one as it is a cubic. The product of the zeroes is
−3 = 2 and the product of 2 and 4 is 3. So the third zero is 2/3 = 4.
Thus

x3 + 2x+ 3 = (x− 2)(x− 4)2 = (x+ 3)(x+ 1)2.

(ii) Show that x2 + 6x+ 12 is irreducible over Q.

There are many ways to do this. Probably the easiest is to apply
Eisenstein with p = 3.

(iii) Is x2 + 6x+ 12 irreducible over R? Over C?

The discriminant is 36 − 48 < 0. Thus x2 + 6x + 12 has two complex
conjugate roots and no real roots. It follows that x2 + 6x + 12 is
irreducible over R and reducible over C.
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11. (10pts) State Eisenstein’s criteria. Prove that the polynomial f(x)

3x13−15x12+25x11+30x10−40x9+10x8+15x7−5x6−30x5+10x4+15x3−5x2+20x+5,

is an irreducible element of Q[x].
Let f(x) be a polynomial with integer coefficients. Suppose that p
is a prime that divides all but the leading coefficient (so that p does
not divide the leading coefficient) and p2 does not divide the constant
coefficient. Then f(x) is irreducible over Q.
Apply Eisenstein with p = 5.
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Bonus Challenge Problems

12. (10pts) Prove Lagrange’s theorem.

Let H be a subgroup of the finite group G. If g ∈ G define a map

ψ : H −→ gH by sending h −→ gh.

Note that ψ has an inverse map,

φ : gH −→ H by sending gh −→ h.

Therefore ψ is one to one and onto. Since the left cosets of H in G are
a partition of G and every left coset has the same size as H, we have

|G| = |H|[G : H].
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13. (10pts) Find all irreducible polynomials of degree at most 3 over

Z3.

We first find all monic polynomials of degree at most 3. Every linear
polynomial is irreducible;

x x+ 1 and x+ 2.

Multiplying by 2 we get

2x 2x+ 2 and 2x+ 1.

A general monic quadratic polynomial looks like x2 + ax + b. This is
irreducible if it has no zeroes. b 6= 0 if α = 0 is not a zero.

f(1) = a+ b+ 1 and f(2) = 4 + 2a+ b = 2a+ b+ 1.

Thus b 6= 0, a+ b 6= 2 and 2a+ b 6= 2. The possibilities are

x2 + 1 x2 + x+ 2 and x2 + 2x+ 2.

Multiplying by 2 we get

2x2 + 2 2x2 + 2x+ 1 and 2x2 + x+ 1.

A general monic cubic polynomial looks like x3 + ax2 + bx+ c. This is
irreducible if it has no zeroes. c 6= 0 if α = 0 is not a zero.

f(1) = a+ b+ c+1 and f(2) = 8+4a+2b+ c = a+2b+ c+2.

Thus c 6= 0, a+ b+ c 6= 2 and a+ 2b+ c 6= 1. The possibilities are

x3+2x+1 x3+x2+2x+1 x3+2x2+1 and x3+2x2+x+1,

when c = 1 and

x3+2x+2 x3+x2+2 x3+x2+x+2 and x3+2x2+2x+2,

when c = 2.
Multiplying by 2 we get

2x3+x+2 2x3+2x2+x+2 2x3+x2+2 and 2x3+x2+2x+2,

and

2x3+x+1 2x3+2x2+1 2x3+2x2+2x+1 and 2x3+x2+x+1.
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14. (10pts) Show that every finite subroup G of the multiplicative group

of a field F is cyclic.

See the lecture notes.
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15. (10pts) Show that if p is a prime then xp−1 + xp−2 + · · · + 1 is an

irreducible polynomial over Q.

See the lecture notes.
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