## FINAL EXAM MATH 103B, UCSD, SPRING 16

You have three hours.

| Problem | Points | Score |
|---------|--------|-------|
| 1       | 30     |       |
| 2       | 20     |       |
| 3       | 15     |       |
| 4       | 10     |       |
| 5       | 10     |       |
| 6       | 15     |       |
| 7       | 10     |       |
| 8       | 10     |       |
| 9       | 10     |       |
| 10      | 15     |       |
| 11      | 10     |       |
| 12      | 10     |       |
| 13      | 10     |       |
| 14      | 10     |       |
| 15      | 10     |       |
| Total   | 155    |       |

There are 11 problems, and the total number of points is 155. Show all your work. *Please make your work as clear and easy to follow as possible.* 

\_\_\_\_\_

Name:\_\_\_\_\_

Signature:\_\_\_\_\_

1. (30pts) (i) Give the definition of a left coset of a subgroup H of a group G. A subset of the form

$$gH = \{ \, gh \, | \, h \in H \, \}$$

for any  $g \in G$ .

(ii) Give the definition of the kernel of a homomorphism of groups. If  $\phi: G \longrightarrow G'$  is a homomorphism of groups then the kernel is the inverse image of the identity.

(iii) Give the definition of a normal subgroup H of a group G. H is a normal subgroup if the left cosets are equal to the right cosets, gH = Hg. (iv) Give the definition of a unit in a ring R with unity.

 $u \in R$  is a unit if u has an inverse v, so that, uv = vu = 1.

(v) Give the definition of the Euler phi-function.  $\varphi(n)$  is the number of integers between 0 and n-1 coprime to n.

(vi) Give the definition of an irreducible polynomial over a field. A non-zero polynomial f(x) over a field F is irreducible if whenever f(x) = g(x)h(x) then one of g(x) or h(x) has degree equal to the degree of f(x). 2. (20pts) (i) Find all cosets of  $\langle 4 \rangle$  inside the group  $\mathbb{Z}_{12}$ .  $\langle 4 \rangle = \{0, 4, 8\} \quad 1 + \langle 4 \rangle = \{1, 5, 9\} \quad 2 + \langle 4 \rangle = \{2, 6, 10\} \text{ and } 3 + \langle 4 \rangle = \{3, 5, 11\}$ 

(ii) Let  $\sigma = (1, 2, 4, 5)(3, 6)$  in  $S_6$ . Find the index of  $\langle \sigma \rangle$  in  $S_6$ .  $\sigma$  has order 4, so that  $|\langle \sigma \rangle| = 4$ . So by Lagrange the index is

$$\frac{|S_6|}{|\langle\sigma\rangle|} = \frac{6!}{4} = 6 \cdot 5 \cdot 3 \cdot 2 = 180.$$

(iii) Find the order of (3, 6, 12, 16) in  $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$ . 3 has order 4 in  $\mathbb{Z}_4$ ; 6 has order 2 = 12/6 in  $\mathbb{Z}_{12}$ ; 12 has order 5 = 20/4 in  $\mathbb{Z}_{20}$ ; 16 has order 3 = 24/8 in  $\mathbb{Z}_{24}$ . The order of (3, 6, 12, 16) in the product is the lowest common multiple of 4, 2, 5 and 3, which is 60.

(iv) Find  $\phi(14)$ , if  $\phi: \mathbb{Z} \longrightarrow S_8$  is a group homomorphism and  $\phi(1) = (2,5)(1,4,6,7)$ .

 $\phi(1)$  has order 4. Thus

$$\begin{split} \phi(14) &= \phi(12+2) \\ &= \phi(12)\phi(2) \\ &= \phi(4)^3\phi(1)\phi(1) \\ &= (2,5)(1,4,6,7)(2,5)(1,4,6,7) \\ &= (1,6)(4,7). \end{split}$$

3. (15pts) (i) State the fundamental theorem of finitely generated abelian groups.

Every finitely generated abelian group is isomorphic to a product

$$\mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z},$$

where  $p_1, p_2, \ldots, p_n$  are prime numbers and  $a_1, a_2, \ldots, a_n$  are positive integers. The direct product is unique, up to re-ordering the factors, so that the number of copies of  $\mathbb{Z}$  and the prime powers are unique.

(ii) Find all abelian groups of order 1400, up to isomorphism.

$$1400 = 100 \cdot 14 = 2^2 \cdot 5^2 \cdot 2 \cdot 7 = 2^3 \cdot 5^2 \cdot 7.$$

Thus

(1)  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7$ (2)  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25} \times \mathbb{Z}_7$ (3)  $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7$ (4)  $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_{25} \times \mathbb{Z}_7$ (5)  $\mathbb{Z}_8 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7$ (6)  $\mathbb{Z}_8 \times \mathbb{Z}_{25} \times \mathbb{Z}_7$ ,

is a complete list of abelian groups of order 1400, up to isomorphism.

4. (10pts) Is there a homomorphism  $S_6 \longrightarrow \mathbb{Z}_7$  which is onto? If there is one, give an example and if there is not, explain why not.

There is no onto homomorphism. Suppose not, suppose that  $\phi[S_6] = \mathbb{Z}_7$ . By the first isomorphism theorem  $\mathbb{Z}_7$  is isomorphic to  $S_6/K$ , where K is the kernel of  $\phi$ . By Lagrange this has 6!/k elements, where k is the order of K. But 7 does not divide 6!, so this is not possible.

5. (10pts) Show that  $A_n$  is a normal subgroup of  $S_n$  and compute  $S_n/A_n$ .

Let  $\phi: S_n \longrightarrow \mathbb{Z}_2$  be the map which sends the permutation  $\sigma$  to 0 if  $\sigma$  is even and 1 if  $\sigma$  is odd. We check that  $\phi$  is a group homomorphism. We have to check that

$$\phi(\sigma\tau) = \phi(\sigma) + \phi(\tau).$$

There are four cases, depending on the parity of  $\sigma$  and  $\tau$ . If  $\sigma$  and  $\tau$  are even then then so is  $\sigma\tau$ , the LHS is 0 and the RHS is 0 + 0 = 0.

If one of  $\sigma$  and  $\tau$  is odd and the other is even then  $\sigma\tau$  is odd. The LHS is 1 and the RHS is 0 + 1 = 1.

If both  $\sigma$  and  $\tau$  are odd then  $\sigma\tau$  is even. The LHS is 0 and the RHS is 1 + 1 = 0.

Therefore  $\phi$  is a group homomorphism. The kernel is  $A_n$  and so  $A_n$  is a normal subgroup. The quotient is isomorphic to  $\mathbb{Z}_2$  by the first isomorphism theorem.

6. (15pts) (i) Let  $\phi: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$  be a group homomorphism. If  $\phi(1) = (a, b)$  then what is  $\phi(2)$ ?  $\phi(3)$ ?  $\phi(n)$ ?  $\phi(2) = \phi(1+1) = \phi(1) + \phi(1) = (a, b) + (a, b) = (2a, 2b)$ .  $\phi(3) = \phi(2+1) = \phi(2) + \phi(1) = (2a, 2b) + (a, b) = (3a, 3b)$ . More generally  $\phi(n) = (na, nb)$  by induction.

(ii) Let  $\phi: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$  be a ring homomorphism. If  $\phi(1) = (a, b)$  then what are the possible values of a and b?  $1 = 1 \cdot 1$  so that  $(a, b) = \phi(1) = \phi(1 \cdot 1) = \phi(1) \cdot \phi(1) = (a, b)(a, b) =$  $(a^2, b^2)$ . So  $a^2 = a$  and  $b^2 = b$ . It follows that a and b are individually either zero or one.

(iii) Describe all ring homomorphisms  $\phi: \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$ .

By part (i) it suffices to determine all possible values of a and b. There are four possible choices of a and b, a = b = 0; a = 1, b = 0; a = 0, b = 1 and a = b = 1. We check that these are ring homomorphisms. In the first case we have the zero homomorphism,  $n \longrightarrow (0,0)$ . The next two cases are inclusion into either factor,  $n \longrightarrow (n,0)$  and  $n \longrightarrow (0,n)$ . The last case is the inclusion  $n \longrightarrow (n,n)$  which is a ring homomorphism.

## 7. (10pts) Find a generator of the group of units of $\mathbb{Z}_{17}$ .

The group of units has 16 elements. As the order of any element divides 16 by Lagrange, the possible orders are 1, 2, 4, 8 and 16. If  $a \in \mathbb{Z}_{17}$  has order at most 8 then  $a^8 = 1 \mod 17$ . So it suffices to find a such that  $a^8 \neq 1 \mod 17$ . We apply trial and error. If a = 2 then  $2^2 = 4$ ,  $2^4 = 16 = -1$  and so  $2^8 = 1$ , no good.  $3^2 = 9$ ,  $3^3 = 27 = 10$ ,  $3^4 = 30 = 13 = -4$  and  $3^8 = (-4)^2 = 16 = -1$ . So 3 is a generator.

8. (10pts) Find the remainder of  $37^{49}$  when it is divided by 7.  $37 = 2 \mod 7$  and so we just need to compute  $2^{49}$ . Fermat implies that  $2^6 = 1 \mod 7$ .  $49 = 48 + 1 = 8 \cdot 6 + 1$ . Thus  $37^{49} = 2^{49}$ 

9. (10pts) If  $f(x) = x^4 + 5x^3 - 3x^2$  and  $g(x) = 5x^2 - x + 2$  then find q(x) and  $r(x) \in \mathbb{Z}_{11}[x]$  such that f(x) = q(x)g(x) + r(x), by applying the division algorithm.

Applying the division algorithm we get

$$f(x) = q(x)g(x) + r(x)$$
  
$$x^{4} + 5x^{3} - 3x^{2} = (9x^{2} + 5x + 10)(5x^{2} - x + 2) + 2.$$

10. (15pts) (i) Express  $x^3+2x+3$  as a product of irreducible polynomials over  $\mathbb{Z}_5$ . Let  $f(x) = x^3 + 2x + 3$ . We check for zeroes of f(x)f(0) = 3 f(1) = 1 f(2) = 8+4+3 = 0 f(3) = 27+3+6 = 1 and f(4) = 64+8+3 = 0. Thus  $\alpha = 2$  and  $\alpha = 4$  are zeroes. Thus f(x) has two linear factors. It must have another one as it is a cubic. The product of the zeroes is -3 = 2 and the product of 2 and 4 is 3. So the third zero is 2/3 = 4. Thus

$$x^{3} + 2x + 3 = (x - 2)(x - 4)^{2} = (x + 3)(x + 1)^{2}$$

(ii) Show that  $x^2 + 6x + 12$  is irreducible over  $\mathbb{Q}$ . There are many ways to do this. Probably the easiest is to apply Eisenstein with p = 3.

(iii) Is  $x^2 + 6x + 12$  irreducible over  $\mathbb{R}$ ? Over  $\mathbb{C}$ ?

The discriminant is 36 - 48 < 0. Thus  $x^2 + 6x + 12$  has two complex conjugate roots and no real roots. It follows that  $x^2 + 6x + 12$  is irreducible over  $\mathbb{R}$  and reducible over  $\mathbb{C}$ .

11. (10pts) State Eisenstein's criteria. Prove that the polynomial f(x) $3x^{13}-15x^{12}+25x^{11}+30x^{10}-40x^9+10x^8+15x^7-5x^6-30x^5+10x^4+15x^3-5x^2+20x+5$ , is an irreducible element of  $\mathbb{Q}[x]$ . Let f(x) be a polynomial with integer coefficients. Suppose that pis a prime that divides all but the leading coefficient (so that p does

not divide the leading coefficient) and  $p^2$  does not divide the constant coefficient. Then f(x) is irreducible over  $\mathbb{Q}$ .

Apply Eisenstein with p = 5.

## **Bonus Challenge Problems**

12. (10pts) Prove Lagrange's theorem. Let H be a subgroup of the finite group G. If  $g \in G$  define a map

 $\psi \colon H \longrightarrow gH$  by sending  $h \longrightarrow gh$ .

Note that  $\psi$  has an inverse map,

 $\phi: gH \longrightarrow H$  by sending  $gh \longrightarrow h$ .

Therefore  $\psi$  is one to one and onto. Since the left cosets of H in G are a partition of G and every left coset has the same size as H, we have

$$|G| = |H|[G:H].$$

13. (10pts) Find all irreducible polynomials of degree at most 3 over  $\mathbb{Z}_3$ .

We first find all monic polynomials of degree at most 3. Every linear polynomial is irreducible;

$$x \quad x+1 \quad \text{and} \quad x+2.$$

Multiplying by 2 we get

2x 2x+2 and 2x+1.

A general monic quadratic polynomial looks like  $x^2 + ax + b$ . This is irreducible if it has no zeroes.  $b \neq 0$  if  $\alpha = 0$  is not a zero.

$$f(1) = a + b + 1$$
 and  $f(2) = 4 + 2a + b = 2a + b + 1$ .

Thus  $b \neq 0$ ,  $a + b \neq 2$  and  $2a + b \neq 2$ . The possibilities are

$$x^{2} + 1$$
  $x^{2} + x + 2$  and  $x^{2} + 2x + 2$ .

Multiplying by 2 we get

$$2x^2 + 2$$
  $2x^2 + 2x + 1$  and  $2x^2 + x + 1$ .

A general monic cubic polynomial looks like  $x^3 + ax^2 + bx + c$ . This is irreducible if it has no zeroes.  $c \neq 0$  if  $\alpha = 0$  is not a zero.

 $\begin{array}{ll} f(1)=a+b+c+1 & \text{and} & f(2)=8+4a+2b+c=a+2b+c+2.\\ \text{Thus } c\neq 0, \ a+b+c\neq 2 \ \text{and} \ a+2b+c\neq 1. \ \text{The possibilities are} \\ x^3+2x+1 & x^3+x^2+2x+1 & x^3+2x^2+1 & \text{and} & x^3+2x^2+x+1,\\ \text{when } c=1 \ \text{and} \\ x^3+2x+2 & x^3+x^2+2 & x^3+x^2+x+2 & \text{and} & x^3+2x^2+2x+2,\\ \text{when } c=2.\\ \text{Multiplying by 2 we get} \\ 2x^3+x+2 & 2x^3+2x^2+x+2 & 2x^3+x^2+2 & \text{and} & 2x^3+x^2+2x+2,\\ \text{and} \\ 2x^3+x+1 & 2x^3+2x^2+1 & 2x^3+2x^2+2x+1 & \text{and} & 2x^3+x^2+x+1. \end{array}$ 

14. (10pts) Show that every finite subroup G of the multiplicative group of a field F is cyclic. See the lecture notes. 15. (10pts) Show that if p is a prime then  $x^{p-1} + x^{p-2} + \cdots + 1$  is an irreducible polynomial over  $\mathbb{Q}$ . See the lecture notes.