10. Basic properties of Rings

Lemma 10.1. Let R be a ring and let a and b be elements of R.
Then
(1) $a 0=0 a=0$.
(2) $a(-b)=(-a) b=-(a b)$
(3) $(-a)(-b)=a b$.

Proof. Let $x=a 0$. We have

$$
\begin{aligned}
x & =a 0 \\
& =a(0+0) \\
& =a 0+a 0 \\
& =x+x .
\end{aligned}
$$

Adding $-x$ to both sides, we get $x=0$. By symmetry $0 a=0$. This is (1).

Let $y=a(-b)$. We want to show that y is the additive inverse of $a b$, that is, we want to show that $y+a b=0$. We have

$$
\begin{aligned}
y+a b & =a(-b)+a b \\
& =a(-b+b) \\
& =a 0 \\
& =0,
\end{aligned}
$$

by (1). By symmetry $(-a) b=-a b$. Hence (2).

$$
\begin{aligned}
(-a)(-b) & =-(a(-b)) \\
& =--a b \\
& =a b,
\end{aligned}
$$

which is (3).
Definition 10.2. Let $\phi: R \longrightarrow S$ be a function between two rings. We say that ϕ is a ring homomorphism if for every a and $b \in R$,

$$
\begin{aligned}
\phi(a+b) & =\phi(a)+\phi(b) \\
\phi(a \cdot b) & =\phi(a) \cdot \phi(b) .
\end{aligned}
$$

Note that a ring homomorphism is automatically a group homomorphism. In particular the kernel of ϕ is an additive subgroup of R and ϕ is one to one if and only if $\operatorname{Ker} \phi=\{0\}$.

Example 10.3. Let F be the ring of all functions from \mathbb{R} to \mathbb{R}. Given $a \in \mathbb{R}$ we have an evaluation homomorphism

$$
\phi_{a}: F \longrightarrow \mathbb{R} \quad \text { given by } \quad f \longrightarrow f(a),
$$

which sends a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ to its value at a.
We have already seen that ϕ is a group homomorphism. We check it is a ring homomorphism. Pick f and $g \in F$. Then

$$
\begin{aligned}
\phi(f g) & =(f g)(a) \\
& =f(a) g(a) \\
& =\phi(f) \phi(g)
\end{aligned}
$$

Therefore ϕ is a ring homomorphism.
Example 10.4. Let $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_{n}$ be the map which sends a to its remainder r modulo n.

We have already seen that ϕ is a group homomorphism. We check it is a ring homomorphism. Suppose that a and b are integers. We may write

$$
a=q_{1} n+r_{1} \quad \text { and } \quad b=q_{2} n+r_{2}
$$

Then

$$
\begin{aligned}
a b & =\left(q_{1} n+r_{1}\right)\left(q_{2} n+r_{2}\right) \\
& =\left(q_{1} q_{2} n+r_{1} q_{2}+r_{2} q_{1}\right) n+r_{1} r_{2}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\phi(a b) & =r_{1} r_{2} \\
& =\phi(a) \phi(b) .
\end{aligned}
$$

Definition 10.5. A ring homomorphism $\phi: R \longrightarrow R^{\prime}$ is an isomorphism if ϕ is one to one and onto.
Example 10.6. Consider the two rings \mathbb{Z} and $2 \mathbb{Z}$.
These are isomorphic as groups, since the function

$$
\mathbb{Z} \longrightarrow 2 \mathbb{Z} \quad \text { which sends } \quad n \longrightarrow 2 n
$$

is a group homomorphism is one to one and onto. However ϕ is not an isomorphism of rings (in fact they are not isomorphic as rings). Indeed,

$$
\phi(1.1)=\phi(1)=2 \quad \text { whilst } \quad \phi(1) \phi(1)=2 \cdot 2=4 \neq 2 .
$$

Thus

$$
\phi(1.1) \neq \phi(1) \phi(1) .
$$

Definition 10.7. We say that the ring R is commutative if multiplication is commutative.
(8) (Commutativity) $a \cdot b=b \cdot a$.

We say that R is a ring with unity if
(9) (Unity) There is an element $1 \in R$ such that for all a in R,

$$
a \cdot 1=a=1 \cdot a
$$

Note that matrix groups $M_{n}(R)$ are not commutative in general, even when R is commutative but if R has unity $M_{n}(R)$ does have unity, since the identity matrix acts as the identity. The integers, rationals, reals and complex numbers are commutative rings with unity. However $2 \mathbb{Z}$ is a commutative ring without unity. In particular it is not isomorphic to the integers.

Let R be the ring with a single element 0 . Then R is a commutative ring with unity. In all other rings, $1 \neq 0$.

Example 10.8. Let R and S be two rings. Then $R \times S$ is commutative if and only if R and S are commutative and $R \times S$ is a ring with unity if and only if R and S are rings with unity.

Definition 10.9. Let R be a ring with unity, $1 \neq 0$.
An element $u \in R$ is called a unit if u has a multiplicative inverse in R, that is, there is an element $v \in R$ such that $u v=1=v u$.

We say that R is a division ring if every non-zero element of R is a unit. We say that R is a field if R is a commutative division ring.

Note that zero is never a unit in a ring with unity $1 \neq 0$. Indeed,

$$
0 a=0 \neq 1 .
$$

Example 10.10. What are the units in \mathbb{Z}_{15} ?
Note that the multiples of 3 :

$$
3, \quad 6, \quad 9, \quad \text { and } \quad 12
$$

are not units, since a multiple, of a multiple of three, is a multiple of three:

$$
m(3 n)=3 m n,
$$

and the remainder when you divide by 15 is still a multiple of three.
Similarly the multiples of 5 :

$$
5 \quad \text { and } \quad 10
$$

are also not units.
1 , and $14=-1$ are units, since

$$
14 \cdot 14=\underset{3}{(-1)}(-1)=1
$$

2 is a unit, since

$$
2 \cdot 8=16=1 \quad \bmod 15
$$

By the same token, 8 is a unit and so both

$$
13=-2 \quad \text { and } \quad 7=-8 \quad \bmod 15
$$

are units, since

$$
13 \cdot 7=(-2) \cdot(-8)=2 \cdot 8=1 \quad \bmod 15
$$

4 is a unit, since

$$
4^{2}=16=1 \quad \bmod 15
$$

Therefore $11=-4 \bmod 15$ is also a unit, as

$$
11^{2}=(-4)^{2}=4^{2}=1 \quad \bmod 15
$$

Thus the units are

$$
1, \quad 2, \quad 4, \quad 7, \quad 8, \quad 11, \quad 13, \quad \text { and } \quad 14 .
$$

Example 10.11. The only units in \mathbb{Z} are $\pm 1 ; \mathbb{Z}$ is not a field. For example 2 does not have a multiplicative inverse. On the other hand,

$$
\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

is a tower of subfields.
Let us introduce some convenient notation. If $a \in R$ then
$a+a=2 \cdot a \quad a+a+a=3 \cdot a \quad$ and $\quad a+a+\cdots+a=n \cdot a$.
Note that this is not the same as multiplication in the ring, it is just very convenient shorthand; for example most rings won't contain 2 or 3.

Lemma 10.12. If r and s are coprime natural numbers then the rings $\mathbb{Z}_{r s}$ and $\mathbb{Z}_{r} \times \mathbb{Z}_{s}$ are isomorphic.
Proof. The two additive groups $\mathbb{Z}_{r s}$ and $\mathbb{Z}_{r} \times \mathbb{Z}_{s}$ are isomorphic as groups, since they are both cyclic groups of order $r s$. As 1 is a generator of $\mathbb{Z}_{r s}$ and $(1,1)$ is a generator of $\mathbb{Z}_{r} \times \mathbb{Z}_{s}$, if we define a map

$$
\phi: \mathbb{Z}_{r s} \longrightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s} \quad \text { by the rule } \quad n=n \cdot 1 \longrightarrow n \cdot(1,1),
$$

then ϕ is an isomorphism of groups. To check it is a ring homomorphism, observe that

$$
\begin{aligned}
\phi(n m) & =(n m) \cdot(1,1) \\
& =[n \cdot(1,1)][m \cdot(1,1)] \\
& =\phi(n) \phi(m) .
\end{aligned}
$$

Thus ϕ is a ring homomorphism and so ϕ is a ring isomorphism.

