
11. Integral domains

Consider the polynomial equation

x2 − 5x + 6 = 0.

The usual way to solve this equation is to factor

x2 − 5x + 6 = (x− 2)(x− 3).

Now our equation reduces to

(x− 2)(x− 3) = 0.

If we are trying to find the complex solutions to this equation we argue
that either x = 2 since x = 3, since the only way that a product can
be zero is if one of the factors is zero.

But now suppose that we work in a different ring, say the ring Z12.
In this case we can still factor the polynomial equation and it is still
true that x = 2 and x = 3 are both solutions to this equation. The
problem is that there might be more, since

2 · 6 = 3 · 4 = 8 · 3 = 4 · 6 = 6 · 6 = 6 · 8 = 6 · 10 = 8 · 9 = 0.

In fact if x − 2 = 4 then x − 3 = 3 and so x = 2 + 4 = 6 is also a
solution to the polynomial equation

x2 − 5x + 6 = 0.

Similarly if x− 2 = 9 then x− 3 = 8 and so x = 11 is a solution.
We encode this property in a:

Definition 11.1. Let R be a ring. We say that two non-zero elements
a ∈ R, a 6= 0 and b ∈ R, b 6= 0 are zero-divisors if

ab = 0.

Proposition 11.2. The zero-divisors of Zn are precisely the non-zero
elements which are not coprime to n.

Proof. Pick a non-zero m ∈ Zn. Suppose that m is not coprime to n
and let d > 1 be the gcd. Then

m
(n
d

)
=

(m
d

)
n

which is zero modulo n. Thus m(n/d) = 0 in Zn whilst neither m nor
n/d is zero. Thus m is a zero-divisor.

Now suppose that m is coprime to n. If ms = 0 in Zn then n divides
the product of ms in Z. As n is coprime to m, n must divide s. But
then s = 0 in Zn. It follows that m is not a zero-divisor. �

Corollary 11.3. If p is a prime then Zp has no zero divisors.
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Proof. Immediate from (11.2). �

Definition-Theorem 11.4. Let R be a ring. Then R contains no
zero-divisors if and only if the cancellation laws holds in R, that is,

if ab = ac and a 6= 0 then b = c,

and

if ba = ca and a 6= 0 then b = c.

Proof. Suppose that a and b are zero divisors. Let c = 0. By assump-
tion b 6= c but

ab = 0 = a0 = ac

so that the cancellation law does not hold.
Now suppose that a 6= 0 is not a zero-divisor and

ab = ac.

We have

a(b− c) = ab− ac

= 0.

As a is not a zero-divisor b− c = 0. But then b = c.
By symmetry if ba = ba then b = c as well. �

Definition 11.5. We say that a ring R is an integral domain if R
is commutative, with unity 1 6= 0, has no zero-divisors.

Many of the examples we have seen so far are in fact not integral
domains.

Example 11.6. Both Z and Zp are integral domains, where p is a
prime. Zn is not an integral domain if n is composite.

If R and S are integral domains then surprisingly the product R×S
is never an integral domain:

(1, 0) · (0, 1) = (0, 0),

but neither (1, 0) nor (0, 1) are zero.

Example 11.7. M2(Z2) contains zero-divisors.

For example, (
1 0
0 0

)(
0 0
1 0

)
=

(
0 0
0 0

)
.

Lemma 11.8. If a is a unit then a is not a zero-divisor.
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Proof. Suppose that ba = 0 and that c is the multiplicative inverse of
a. We compute bac, in two different ways.

bac = (ba)c

= 0c

= 0.

On the other hand

bac = b(ac)

= b1

= b.

Thus b = bac = 0. Thus a is not a zero-divisor. �

Proposition 11.9. Every field is an integral domain.

Proof. A field is a commutative ring, with unity 1 6= 0 and by (11.8)
there are no zero divisors. Thus every field is an integral domain. �

Unfortunately the converse is not true.

Example 11.10. Z is an integral domain but not a field.

However we do have:

Theorem 11.11. Every finite integral domain D is a field.

Proof. Pick a non-zero element a ∈ D. Define a function

f : D −→ D by the rule b −→ ab.

Suppose that f(b1) = f(b2). Then ab1 = ab2. As D is an integral
domain we can cancel, so that b1 = b2. But then f is one to one.

As D is finite and f is one to one, it follows that f is onto. As 1 ∈ D
we may find b ∈ D such that f(b) = 1. But then ab = 1. If follows
that a is a unit, so that D is a field. �

Corollary 11.12. If p is a prime then Zp is a field.

Proof. Zp is a domain and it is finite, so (11.11) implies that it is a
field. �

Note that we can do linear algebra over any field, not just the reals.
So we can do linear algebra over a finite field.

Definition 11.13. The characteristic of a ring R is the smallest
non-zero integer n such that n · a = 0 for every a ∈ R, if there is any
such n; otherwise the characteristic is zero.
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Example 11.14. Zn has characteristic n; Z, Q, R and C all have
characteristic zero.

Theorem 11.15. If R is a ring with unity then the characteristic is
the smallest n such that n · 1 = 0 if there is any such n; otherwise the
characteristic is zero.

Proof. If n · 1 is never zero then surely the characteristic is zero.
On the other hand if n · 1 = 0 and there is no smaller n then surely

the characteristic is at least n. If a ∈ R then

n · a = a + a + · · ·+ a

= a1 + a1 + · · ·+ a1

= a(1 + 1 + · · ·+ 1)

= a(n · 1)

= a0

= 0.

Thus the characteristic is indeed n. �
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