11. Integral domains

Consider the polynomial equation

$$
x^{2}-5 x+6=0
$$

The usual way to solve this equation is to factor

$$
x^{2}-5 x+6=(x-2)(x-3) .
$$

Now our equation reduces to

$$
(x-2)(x-3)=0 .
$$

If we are trying to find the complex solutions to this equation we argue that either $x=2$ since $x=3$, since the only way that a product can be zero is if one of the factors is zero.

But now suppose that we work in a different ring, say the ring \mathbb{Z}_{12}. In this case we can still factor the polynomial equation and it is still true that $x=2$ and $x=3$ are both solutions to this equation. The problem is that there might be more, since

$$
2 \cdot 6=3 \cdot 4=8 \cdot 3=4 \cdot 6=6 \cdot 6=6 \cdot 8=6 \cdot 10=8 \cdot 9=0
$$

In fact if $x-2=4$ then $x-3=3$ and so $x=2+4=6$ is also a solution to the polynomial equation

$$
x^{2}-5 x+6=0 \text {. }
$$

Similarly if $x-2=9$ then $x-3=8$ and so $x=11$ is a solution.
We encode this property in a:
Definition 11.1. Let R be a ring. We say that two non-zero elements $a \in R, a \neq 0$ and $b \in R, b \neq 0$ are zero-divisors if

$$
a b=0 .
$$

Proposition 11.2. The zero-divisors of \mathbb{Z}_{n} are precisely the non-zero elements which are not coprime to n.

Proof. Pick a non-zero $m \in \mathbb{Z}_{n}$. Suppose that m is not coprime to n and let $d>1$ be the gcd. Then

$$
m\left(\frac{n}{d}\right)=\left(\frac{m}{d}\right) n
$$

which is zero modulo n. Thus $m(n / d)=0$ in \mathbb{Z}_{n} whilst neither m nor n / d is zero. Thus m is a zero-divisor.

Now suppose that m is coprime to n. If $m s=0$ in \mathbb{Z}_{n} then n divides the product of $m s$ in \mathbb{Z}. As n is coprime to m, n must divide s. But then $s=0$ in \mathbb{Z}_{n}. It follows that m is not a zero-divisor.

Corollary 11.3. If p is a prime then \mathbb{Z}_{p} has no zero divisors.

Proof. Immediate from (11.2).
Definition-Theorem 11.4. Let R be a ring. Then R contains no zero-divisors if and only if the cancellation laws holds in R, that is,

$$
\text { if } a b=a c \text { and } a \neq 0 \quad \text { then } \quad b=c \text {, }
$$

and

$$
\text { if } b a=c a \text { and } a \neq 0 \quad \text { then } \quad b=c \text {. }
$$

Proof. Suppose that a and b are zero divisors. Let $c=0$. By assumption $b \neq c$ but

$$
a b=0=a 0=a c
$$

so that the cancellation law does not hold.
Now suppose that $a \neq 0$ is not a zero-divisor and

$$
a b=a c .
$$

We have

$$
\begin{aligned}
a(b-c) & =a b-a c \\
& =0 .
\end{aligned}
$$

As a is not a zero-divisor $b-c=0$. But then $b=c$.
By symmetry if $b a=b a$ then $b=c$ as well.
Definition 11.5. We say that a ring R is an integral domain if R is commutative, with unity $1 \neq 0$, has no zero-divisors.

Many of the examples we have seen so far are in fact not integral domains.

Example 11.6. Both \mathbb{Z} and \mathbb{Z}_{p} are integral domains, where p is a prime. \mathbb{Z}_{n} is not an integral domain if n is composite.

If R and S are integral domains then surprisingly the product $R \times S$ is never an integral domain:

$$
(1,0) \cdot(0,1)=(0,0),
$$

but neither $(1,0)$ nor $(0,1)$ are zero.
Example 11.7. $M_{2}\left(\mathbb{Z}_{2}\right)$ contains zero-divisors.
For example,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Lemma 11.8. If a is a unit then a is not a zero-divisor.

Proof. Suppose that $b a=0$ and that c is the multiplicative inverse of a. We compute $b a c$, in two different ways.

$$
\begin{aligned}
b a c & =(b a) c \\
& =0 c \\
& =0 .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
b a c & =b(a c) \\
& =b 1 \\
& =b .
\end{aligned}
$$

Thus $b=b a c=0$. Thus a is not a zero-divisor.
Proposition 11.9. Every field is an integral domain.
Proof. A field is a commutative ring, with unity $1 \neq 0$ and by (11.8) there are no zero divisors. Thus every field is an integral domain.

Unfortunately the converse is not true.
Example 11.10. \mathbb{Z} is an integral domain but not a field.
However we do have:
Theorem 11.11. Every finite integral domain D is a field.
Proof. Pick a non-zero element $a \in D$. Define a function

$$
f: D \longrightarrow D \quad \text { by the rule } \quad b \longrightarrow a b .
$$

Suppose that $f\left(b_{1}\right)=f\left(b_{2}\right)$. Then $a b_{1}=a b_{2}$. As D is an integral domain we can cancel, so that $b_{1}=b_{2}$. But then f is one to one.

As D is finite and f is one to one, it follows that f is onto. As $1 \in D$ we may find $b \in D$ such that $f(b)=1$. But then $a b=1$. If follows that a is a unit, so that D is a field.

Corollary 11.12. If p is a prime then \mathbb{Z}_{p} is a field.
Proof. \mathbb{Z}_{p} is a domain and it is finite, so (11.11) implies that it is a field.

Note that we can do linear algebra over any field, not just the reals. So we can do linear algebra over a finite field.

Definition 11.13. The characteristic of a ring R is the smallest non-zero integer n such that $n \cdot a=0$ for every $a \in R$, if there is any such n; otherwise the characteristic is zero.

Example 11.14. \mathbb{Z}_{n} has characteristic $n ; \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} all have characteristic zero.

Theorem 11.15. If R is a ring with unity then the characteristic is the smallest n such that $n \cdot 1=0$ if there is any such n; otherwise the characteristic is zero.

Proof. If $n \cdot 1$ is never zero then surely the characteristic is zero.
On the other hand if $n \cdot 1=0$ and there is no smaller n then surely the characteristic is at least n. If $a \in R$ then

$$
\begin{aligned}
n \cdot a & =a+a+\cdots+a \\
& =a 1+a 1+\cdots+a 1 \\
& =a(1+1+\cdots+1) \\
& =a(n \cdot 1) \\
& =a 0 \\
& =0 .
\end{aligned}
$$

Thus the characteristic is indeed n.

