Proposition 12.1. Let R be a commutative ring with $1 \neq 0$ and let U be the set of all units.

Then U is a group under multiplication.

Proof. We first check that U is closed under multiplication. Let u_1 and u_2 be units. Then we may find v_1 and v_2 such that $u_1v_1 = u_2v_2 = 1$. It follows that

$$(u_1u_2)(v_1v_2) = (u_1v_1)(u_2v_2) = 1.$$

Thus u_1u_2 is a unit and so $u_1u_2 \in U$. Therefore U is closed under multiplication.

We check the axioms for a group. We have already checked there is a well-defined multiplication. By assumption multiplication is associative in R and so it is associative in U. 1 is a unit and so $1 \in U$ plays the role of the identity. If $u \in U$ is a unit then by assumption there is an element $v \in R$ such that $uv = 1$. But then v is a unit so that $v \in U$ and v is the inverse of u.

It follows that U is a group. \qed

Theorem 12.2 (Fermat’s Little Theorem). If $a \in \mathbb{Z}$ is an integer then $a^p = a \mod p$.

In particular, if a is coprime to p then $a^{p-1} = 1 \mod p$.

Proof. Since \mathbb{Z}_p is a field every non-zero element is a unit. \mathbb{Z}_p has p elements so that there are $p - 1$ units. Therefore every unit has order dividing $p - 1$, by Lagrange. In particular if r is a non-zero element of \mathbb{Z}_p then $r^{p-1} = 1$ in \mathbb{Z}_p.

If a is coprime to p then its remainder is a unit. Therefore $a^{p-1} = 1 \mod p$. This is the second statement.

Now suppose that a is an arbitrary integer. If it is coprime to p then

$$a^p = a^{p-1}a = 1a = a.$$

If it is not coprime to p then the remainder is zero. As $0^p = 0$ we still have $a^p = a \mod p$. \qed

(12.2) is very useful.

Example 12.3. What is the remainder when you divide 26^{566} by 17?

First note that 26 has remainder 9 when divided by 17. So it suffices to compute 9^{566} modulo 17. Now Fermat implies that

$$9^{16} = 1 \mod 17.$$

We can write

$$566 = 35 \cdot 16 + 6.$$

12. Fermat Theorem
Thus
\[26^{566} = 9^{566}\]
\[= 3^{35\cdot16+6}\]
\[= (9^{16})^{35} 9^6\]
\[= 9^6\]
\[= 3^{12}\]
\[= (3^3)^4\]
\[= (27)^4\]
\[= (10)^4\]
\[= (100)^2\]
\[= (-2)^2\]
\[= 4 \mod 17.\]

Example 12.4. Is \(2^{86,243} - 1\) divisible by 11?

As before, let’s compute the remainder of \(2^{86,243}\) after dividing by 11. By Fermat, if we raise 2 to a multiple of 10 then we get a remainder of 1,
\[2^{10} = 1 \mod 11.\]

Thus
\[2^{86,243} = 2^{86240+3}\]
\[= 2^{8624\cdot10+3}\]
\[= (2^{10})^{8624} 2^3\]
\[= 2^3\]
\[= 8 \neq 1 \mod 11.\]

Thus \(2^{86,243} - 1\) is not divisible by 11. In fact 86,243 is a prime number and it is known that \(2^{86,243} - 1\) is a prime number. Primes of the form \(2^p - 1\) where \(p\) is prime are known as Mersenne primes.

Example 12.5. Show that \(n^{49} - n\) is divisible by 15, for every integer \(n\).

As 3 and 5 are coprime, it is enough to check that \(n^{49} - n\) is divisible by 3 and 5. Note that \(n^{49} - n = n(n^{48} - 1)\).

If \(n\) is divisible by three then so is \(n^{49} - n\). Otherwise \(n\) is coprime to 3 and by Fermat
\[n^2 = 1 \mod 3.\]
Thus

\[n^{48} = (n^2)^{24} \]
\[= 1 \mod 3. \]

Thus 3 always divides \(n^{49} - n \).

If \(n \) is divisible by five then so is \(n^{49} - n \). Otherwise \(n \) is coprime to 5 and by Fermat

\[n^4 = 1 \mod 5. \]

Thus

\[n^{48} = (n^4)^{12} \]
\[= 1 \mod 5. \]

Thus 5 always divides \(n^{49} - n \).

Hence 15 always divides \(n^{49} - n \).