12. Fermat Theorem

Proposition 12.1. Let R be a commutative ring with $1 \neq 0$ and let U be the set of all units.

Then U is a group under multiplication.

Proof. We first check that U is closed under multiplication. Let u_1 and u_2 be units. Then we may find v_1 and v_2 such that $u_1v_1 = u_2v_2 = 1$. It follows that

$$(u_1u_2)(v_1v_2) = (u_1v_1)(u_2v_2) = 1.$$

Thus u_1u_2 is a unit and so $u_1u_2 \in U$. Therefore U is closed under multiplication.

We check the axioms for a group. We have already checked there is a well-defined multiplication. By assumption multiplication is associative in R and so it is associative in U. 1 is a unit and so $1 \in U$ plays the role of the identity. If $u \in U$ is a unit then by assumption there is an element $v \in R$ such that uv = 1. But then v is a unit so that $v \in U$ and v is the inverse of u.

It follows that U is a group.

Theorem 12.2 (Fermat's Little Theorem). If $a \in \mathbb{Z}$ is an integer then $a^p = a \mod p$.

In particular, if a is coprime to p then $a^{p-1} = 1 \mod p$.

Proof. Since \mathbb{Z}_p is a field every non-zero element is a unit. \mathbb{Z}_p has p elements so that there are p-1 units. Therefore every unit has order dividing p-1, by Lagrange. In particular if r is a non-zero element of \mathbb{Z}_p then $r^{p-1} = 1$ in \mathbb{Z}_p .

If a is coprime to p then its remainder is a unit. Therefore $a^{p-1} = 1 \mod p$. This is the second statement.

Now suppose that a is an arbitrary integer. If it is coprime to p then

$$a^p = a^{p-1}a = 1a = a$$

If it is not coprime to p then the remainder is zero. As $0^p = 0$ we still have $a^p = a \mod p$.

(12.2) is very useful.

Example 12.3. What is the remainder when you divide 26^{566} by 17?

First note that 26 has remainder 9 when divided by 17. So it suffices to compute 9^{566} modulo 17. Now Fermat implies that

$$9^{16} = 1 \mod 17.$$

We can write

$$566 = 35 \cdot 16 + 6.$$

Thus

$$26^{566} = 9^{566}$$

= 9^{35·16+6}
= (9¹⁶)³⁵9⁶
= 9⁶
= 3¹²
= (3³)⁴
= (27)⁴
= (10)⁴
= (100)²
= (-2)²
= 4 mod 17.

Example 12.4. Is $2^{86,243} - 1$ divisible by 11?

As before, let's compute the remainder of $2^{86,243}$ after dividing by 11. By Fermat, if we raise 2 to a multiple of 10 then we get a remainder of 1,

$$2^{10} = 1 \mod 11.$$

Thus

$$2^{86,243} = 2^{86240+3}$$

= $2^{8624 \cdot 10+3}$
= $(2^{10})^{8624} 2^3$
= 2^3
= $8 \neq 1 \mod 11$.

Thus $2^{86,243} - 1$ is not divisible by 11. In fact 86,243 is a prime number and it is known that $2^{86,243} - 1$ is a prime number. Primes of the from $2^p - 1$ where p is prime are known as **Mersenne primes**.

Example 12.5. Show that $n^{49} - n$ is divisible by 15, for every integer n.

As 3 and 5 are coprime, it is enough to check that $n^{49} - n$ is divisible by 3 and 5. Note that $n^{49} - n = n(n^{48} - 1)$.

If n is divisible by three then so is $n^{49} - n$. Otherwise n is coprime to 3 and by Fermat

$$n^2 = 1 \mod 3.$$

Thus

$$n^{48} = (n^2)^{24}$$

= 1 mod 3.

Thus 3 always divides $n^{49} - n$. If n is divisible by five then so is $n^{49} - n$. Otherwise n is coprime to 5 and by Fermat

 $n^4 = 1 \mod 5.$

Thus

$$n^{48} = (n^4)^{12}$$

= 1 mod 5.

Thus 5 always divides $n^{49} - n$. Hence 15 always divides $n^{49} - n$.