12. Fermat Theorem

Proposition 12.1. Let R be a commutative ring with $1 \neq 0$ and let U be the set of all units.

Then U is a group under multiplication.
Proof. We first check that U is closed under multiplication. Let u_{1} and u_{2} be units. Then we may find v_{1} and v_{2} such that $u_{1} v_{1}=u_{2} v_{2}=1$. It follows that

$$
\left(u_{1} u_{2}\right)\left(v_{1} v_{2}\right)=\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right)=1 .
$$

Thus $u_{1} u_{2}$ is a unit and so $u_{1} u_{2} \in U$. Therefore U is closed under multiplication.

We check the axioms for a group. We have already checked there is a well-defined multiplication. By assumption multiplication is associative in R and so it is associative in $U .1$ is a unit and so $1 \in U$ plays the role of the identity. If $u \in U$ is a unit then by assumption there is an element $v \in R$ such that $u v=1$. But then v is a unit so that $v \in U$ and v is the inverse of u.

It follows that U is a group.
Theorem 12.2 (Fermat's Little Theorem). If $a \in \mathbb{Z}$ is an integer then $a^{p}=a \bmod p$.

In particular, if a is coprime to p then $a^{p-1}=1 \bmod p$.
Proof. Since \mathbb{Z}_{p} is a field every non-zero element is a unit. \mathbb{Z}_{p} has p elements so that there are $p-1$ units. Therefore every unit has order dividing $p-1$, by Lagrange. In particular if r is a non-zero element of \mathbb{Z}_{p} then $r^{p-1}=1$ in \mathbb{Z}_{p}.

If a is coprime to p then its remainder is a unit. Therefore $a^{p-1}=1$ $\bmod p$. This is the second statement.

Now suppose that a is an arbitrary integer. If it is coprime to p then

$$
a^{p}=a^{p-1} a=1 a=a .
$$

If it is not coprime to p then the remainder is zero. As $0^{p}=0$ we still have $a^{p}=a \bmod p$.
(12.2) is very useful.

Example 12.3. What is the remainder when you divide 26^{566} by 17 ?
First note that 26 has remainder 9 when divided by 17 . So it suffices to compute 9^{566} modulo 17. Now Fermat implies that

$$
9^{16}=1 \quad \bmod 17 .
$$

We can write

$$
566=35 \cdot 16+6
$$

Thus

$$
\begin{aligned}
26^{566} & =9^{566} \\
& =9^{35 \cdot 16+6} \\
& =\left(9^{16}\right)^{35} 9^{6} \\
& =9^{6} \\
& =3^{12} \\
& =\left(3^{3}\right)^{4} \\
& =(27)^{4} \\
& =(10)^{4} \\
& =(100)^{2} \\
& =(-2)^{2} \\
& =4 \bmod 17 .
\end{aligned}
$$

Example 12.4. Is $2^{86,243}-1$ divisible by 11 ?
As before, let's compute the remainder of $2^{86,243}$ after dividing by 11 . By Fermat, if we raise 2 to a multiple of 10 then we get a remainder of 1,

$$
2^{10}=1 \quad \bmod 11
$$

Thus

$$
\begin{aligned}
2^{86,243} & =2^{86240+3} \\
& =2^{8624 \cdot 10+3} \\
& =\left(2^{10}\right)^{8624} 2^{3} \\
& =2^{3} \\
& =8 \neq 1 \quad \bmod 11 .
\end{aligned}
$$

Thus $2^{86,243}-1$ is not divisible by 11 . In fact 86,243 is a prime number and it is known that $2^{86,243}-1$ is a prime number. Primes of the from $2^{p}-1$ where p is prime are known as Mersenne primes.

Example 12.5. Show that $n^{49}-n$ is divisible by 15 , for every integer n.

As 3 and 5 are coprime, it is enough to check that $n^{49}-n$ is divisible by 3 and 5 . Note that $n^{49}-n=n\left(n^{48}-1\right)$.

If n is divisible by three then so is $n^{49}-n$. Otherwise n is coprime to 3 and by Fermat

$$
n^{2}=1_{2} \bmod 3
$$

Thus

$$
\begin{aligned}
n^{48} & =\left(n^{2}\right)^{24} \\
& =1 \quad \bmod 3 .
\end{aligned}
$$

Thus 3 always divides $n^{49}-n$.
If n is divisible by five then so is $n^{49}-n$. Otherwise n is coprime to 5 and by Fermat

$$
n^{4}=1 \quad \bmod 5
$$

Thus

$$
\begin{aligned}
n^{48} & =\left(n^{4}\right)^{12} \\
& =1 \quad \bmod 5 .
\end{aligned}
$$

Thus 5 always divides $n^{49}-n$.
Hence 15 always divides $n^{49}-n$.

