13. Euler Theorem

Theorem 13.1. The units U of \mathbb{Z}_n are precisely the set G_n of elements of \mathbb{Z}_n coprime to n.

In particular G_n is a group under multiplication.

Proof. The product of two numbers coprime to n is coprime to n so that G_n is closed under multiplication. Pick a nonzero element $a \in G_n$ and define a map

 $f: G_n \longrightarrow G_n$ by the rule $b \longrightarrow ab$.

Suppose that $f(b_1) = f(b_2)$. Then $ab_1 = ab_2$. As a is coprime to n, it is not a zero-divisor. Hence the cancellation law holds and so $b_1 = b_2$. It follows that f is one to one.

As G_n is finite, f is onto. Therefore we may find $b \in G_n$ such that 1 = f(b) and so ab = 1. Therefore a is a unit. Thus $G_n \subset U$. Every unit is not a zero-divisor and so every unit is coprime to n. Thus $U = G_n$.

But then G_n is a group as U is a group. \Box

Definition 13.2 (Euler's phi-function). If n is positive integer, $\varphi(n)$ is the number of integers between 1 and n-1 coprime to n.

We already know that if p is prime then $\varphi(p) = p - 1$.

Example 13.3. What is $\varphi(15)$?

We want to count the integers between 1 and 14 coprime to $15 = 3 \cdot 5$. These are the integers which are neither a multiple of 3 nor a multiple of 5. These are

 $1 \quad 2 \quad 4 \quad 7 \quad 8 \quad 11 \quad 13 \quad 14.$

Thus

$$\varphi(15) = 8.$$

Later on we will see a much more efficient way to compute $\varphi(n)$.

Theorem 13.4 (Euler's Theorem). If a is relatively prime to n then

$$a^{\varphi(n)} = 1 \mod n.$$

Proof. If r is the remainder when you divide n into a then

$$a^{\varphi(n)} = r^{\varphi(n)} \mod n.$$

So we might as well assume that $a \in \mathbb{Z}_n$. As a is coprime to $n, a \in G_n$ a group of order $\varphi(n)$. Thus

$$a^{\varphi(n)} = \underset{1}{1} \in \mathbb{Z}_n,$$

and so

$$a^{\varphi(n)} = 1 \mod n.$$

Example 13.5. What is the remainder when you divide 11^{60} by 15?

11 is prime and so it is coprime to 15. We already computed $\varphi(15) = 8$, so that by Euler's Theorem we know:

$$11^8 = 1 \mod 15.$$

Therefore

$$11^{60} = 11^{56} \cdot 11^{4}$$

= $(11^{8})^{7} \cdot 11^{4}$
= 11^{4}
= $(-4)^{4}$
= 2^{8}
= $1 \mod 15$.

by another application of Euler's Theorem, using the fact that 2 is coprime to 15.

One potential drawback of Euler's Theorem is that it seems hard work to compute $\varphi(n)$ if n is large. Not so.

Definition 13.6. Let

 $f: \mathbb{N} \longrightarrow \mathbb{N}$

be a function from the natural numbers to the natural numbers. We say that f is **multiplicative** if

$$f(mn) = f(m)f(n)$$

whenever m and n are coprime.

Proposition 13.7. The Euler phi-function is multiplicative.

Proof. We want to count the number of elements of \mathbb{Z}_{mn} coprime to mn. This is the same as the number of units. Now by the Chinese remainder Theorem, the two rings

 \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$

are isomorphic (this is where we use the fact that m and n are coprime). So the number of units in the first ring is the same as the number of units in the second ring.

Suppose that $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$. This is a unit if and only if we can find $(c, d) \in \mathbb{Z}_m \times \mathbb{Z}_n$ such that

$$(a,b)(c,d) = (ab,cd) = (1,1).$$

It follows that ab = 1 and cd = 1, so that a and b are units. Thus $(a, b) \in \mathbb{Z}_m \times \mathbb{Z}_n$ is a unit if and only if $a \in \mathbb{Z}_m$ and $b \in \mathbb{Z}_n$ is a unit. The number of possibilities for a is $\varphi(m)$ and the number of possibilities for b is $\varphi(n)$. Thus the number of units in $\mathbb{Z}_m \times \mathbb{Z}_n$ is $\varphi(m)\varphi(n)$.

Putting all of this together we get

$$\varphi(mn) = \varphi(m)\varphi(n). \qquad \Box$$

(13.7) already gets us quite far:

$$\varphi(15) = \varphi(3 \cdot 5)$$

= $\varphi(3)\varphi(5)$
= $(3-1)(5-1)$
= 8,

the same answer we got as the slow way of eliminating all multiples of 3 and 5.

Unfortunately we get stuck if n is slighly more complicated:

$$\varphi(24) = \varphi(3 \cdot 8)$$
$$= \varphi(3)\varphi(8)$$
$$= (3-1)\varphi(8).$$

What we are missing is how to compute $\varphi(8)$ or more generally $\varphi(p^k)$ where p is prime.

Proposition 13.8. If p is a prime and k is a natural number then

$$\varphi(p^k) = p^k - p^{k-1}.$$

Proof. We want to know the number of integers between 1 and p^k coprime to p. These are simply the number of integers between 1 and p^k which are not multiples of p. The multiples of p are

1
$$p$$
 2 p 3 p 4 p ... $p^{k-1}p = p^k$.

So there are p^{k-1} multiples of p between 1 and p^k . Hence there are

$$\varphi(p^k) = p^k - p^{k-1}$$

integers between 1 and p^k which are coprime to p.

Using (13.8) we see that

$$\varphi(8) = 8 - 4 = 4.$$

Thus

$$\varphi(24) = 8.$$

Theorem 13.9. If $n = p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}$ is the prime factorisation of the natural number n then

$$\varphi(n) = (p_1^{k_1} - p_1^{k_1 - 1})(p_2^{k_2} - p_2^{k_2 - 1})\dots(p_m^{k_m} - p_m^{k_m - 1}).$$

Proof. We simply apply (13.7) and (13.8):

$$\begin{aligned} \varphi(n) &= \varphi(p_1^{k_1} p_2^{k_2} \dots p_m^{k_m}) \\ &= \varphi(p_1^{k_1}) \varphi(p_2^{k_2}) \dots \varphi(p_m^{k_m}) \\ &= (p_1^{k_1} - p_1^{k_1 - 1}) (p_2^{k_2} - p_2^{k_2 - 1}) \dots (p_m^{k_m} - p_m^{k_m - 1}). \end{aligned}$$