
13. Euler Theorem

Theorem 13.1. The units U of Zn are precisely the set Gn of elements
of Zn coprime to n.

In particular Gn is a group under multiplication.

Proof. The product of two numbers coprime to n is coprime to n so
that Gn is closed under multiplication. Pick a nonzero element a ∈ Gn

and define a map

f : Gn −→ Gn by the rule b −→ ab.

Suppose that f(b1) = f(b2). Then ab1 = ab2. As a is coprime to n, it
is not a zero-divisor. Hence the cancellation law holds and so b1 = b2.
It follows that f is one to one.

As Gn is finite, f is onto. Therefore we may find b ∈ Gn such that
1 = f(b) and so ab = 1. Therefore a is a unit. Thus Gn ⊂ U . Every
unit is not a zero-divisor and so every unit is coprime to n. Thus
U = Gn.

But then Gn is a group as U is a group. �

Definition 13.2 (Euler’s phi-function). If n is positive integer, ϕ(n)
is the number of integers between 1 and n− 1 coprime to n.

We already know that if p is prime then ϕ(p) = p− 1.

Example 13.3. What is ϕ(15)?

We want to count the integers between 1 and 14 coprime to 15 = 3·5.
These are the integers which are neither a multiple of 3 nor a multiple
of 5. These are

1 2 4 7 8 11 13 14.

Thus
ϕ(15) = 8.

Later on we will see a much more efficient way to compute ϕ(n).

Theorem 13.4 (Euler’s Theorem). If a is relatively prime to n then

aϕ(n) = 1 mod n.

Proof. If r is the remainder when you divide n into a then

aϕ(n) = rϕ(n) mod n.

So we might as well assume that a ∈ Zn. As a is coprime to n, a ∈ Gn

a group of order ϕ(n). Thus

aϕ(n) = 1 ∈ Zn,
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and so
aϕ(n) = 1 mod n. �

Example 13.5. What is the remainder when you divide 1160 by 15?

11 is prime and so it is coprime to 15. We already computed ϕ(15) =
8, so that by Euler’s Theorem we know:

118 = 1 mod 15.

Therefore

1160 = 1156 · 114

= (118)7 · 114

= 114

= (−4)4

= 28

= 1 mod 15,

by another application of Euler’s Theorem, using the fact that 2 is
coprime to 15.

One potential drawback of Euler’s Theorem is that it seems hard
work to compute ϕ(n) if n is large. Not so.

Definition 13.6. Let
f : N −→ N

be a function from the natural numbers to the natural numbers. We
say that f is multiplicative if

f(mn) = f(m)f(n)

whenever m and n are coprime.

Proposition 13.7. The Euler phi-function is multiplicative.

Proof. We want to count the number of elements of Zmn coprime to
mn. This is the same as the number of units. Now by the Chinese
remainder Theorem, the two rings

Zmn and Zm × Zn

are isomorphic (this is where we use the fact that m and n are coprime).
So the number of units in the first ring is the same as the number of
units in the second ring.

Suppose that (a, b) ∈ Zm × Zn. This is a unit if and only if we can
find (c, d) ∈ Zm × Zn such that

(a, b)(c, d) = (ab, cd) = (1, 1).
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It follows that ab = 1 and cd = 1, so that a and b are units. Thus
(a, b) ∈ Zm × Zn is a unit if and only if a ∈ Zm and b ∈ Zn is a unit.
The number of possibilities for a is ϕ(m) and the number of possibilities
for b is ϕ(n). Thus the number of units in Zm × Zn is ϕ(m)ϕ(n).

Putting all of this together we get

ϕ(mn) = ϕ(m)ϕ(n). �

(13.7) already gets us quite far:

ϕ(15) = ϕ(3 · 5)

= ϕ(3)ϕ(5)

= (3− 1)(5− 1)

= 8,

the same answer we got as the slow way of eliminating all multiples of
3 and 5.

Unfortunately we get stuck if n is slighly more complicated:

ϕ(24) = ϕ(3 · 8)

= ϕ(3)ϕ(8)

= (3− 1)ϕ(8).

What we are missing is how to compute ϕ(8) or more generally ϕ(pk)
where p is prime.

Proposition 13.8. If p is a prime and k is a natural number then

ϕ(pk) = pk − pk−1.

Proof. We want to know the number of integers between 1 and pk

coprime to p. These are simply the number of integers between 1 and
pk which are not multiples of p. The multiples of p are

1 p 2p 3p 4p . . . pk−1p = pk.

So there are pk−1 multiples of p between 1 and pk. Hence there are

ϕ(pk) = pk − pk−1

integers between 1 and pk which are coprime to p. �

Using (13.8) we see that

ϕ(8) = 8− 4 = 4.

Thus

ϕ(24) = 8.
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Theorem 13.9. If n = pk11 pk22 . . . pkmm is the prime factorisation of the
natural number n then

ϕ(n) = (pk11 − pk1−1
1 )(pk22 − pk2−1

2 ) . . . (pkmm − pkm−1
m ).

Proof. We simply apply (13.7) and (13.8):

ϕ(n) = ϕ(pk11 pk22 . . . pkmm )

= ϕ(pk11 )ϕ(pk22 ) . . . ϕ(pkmm )

= (pk11 − pk1−1
1 )(pk22 − pk2−1

2 ) . . . (pkmm − pkm−1
m ). �
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