13. Euler Theorem

Theorem 13.1. The units U of \mathbb{Z}_{n} are precisely the set G_{n} of elements of \mathbb{Z}_{n} coprime to n.

In particular G_{n} is a group under multiplication.
Proof. The product of two numbers coprime to n is coprime to n so that G_{n} is closed under multiplication. Pick a nonzero element $a \in G_{n}$ and define a map

$$
f: G_{n} \longrightarrow G_{n} \quad \text { by the rule } \quad b \longrightarrow a b
$$

Suppose that $f\left(b_{1}\right)=f\left(b_{2}\right)$. Then $a b_{1}=a b_{2}$. As a is coprime to n, it is not a zero-divisor. Hence the cancellation law holds and so $b_{1}=b_{2}$. It follows that f is one to one.

As G_{n} is finite, f is onto. Therefore we may find $b \in G_{n}$ such that $1=f(b)$ and so $a b=1$. Therefore a is a unit. Thus $G_{n} \subset U$. Every unit is not a zero-divisor and so every unit is coprime to n. Thus $U=G_{n}$.

But then G_{n} is a group as U is a group.
Definition 13.2 (Euler's phi-function). If n is positive integer, $\varphi(n)$ is the number of integers between 1 and $n-1$ coprime to n.

We already know that if p is prime then $\varphi(p)=p-1$.
Example 13.3. What is $\varphi(15)$?
We want to count the integers between 1 and 14 coprime to $15=3 \cdot 5$. These are the integers which are neither a multiple of 3 nor a multiple of 5 . These are

$$
\begin{array}{llllllll}
1 & 2 & 4 & 7 & 8 & 11 & 13 & 14 .
\end{array}
$$

Thus

$$
\varphi(15)=8
$$

Later on we will see a much more efficient way to compute $\varphi(n)$.
Theorem 13.4 (Euler's Theorem). If a is relatively prime to n then

$$
a^{\varphi(n)}=1 \quad \bmod n
$$

Proof. If r is the remainder when you divide n into a then

$$
a^{\varphi(n)}=r^{\varphi(n)} \quad \bmod n
$$

So we might as well assume that $a \in \mathbb{Z}_{n}$. As a is coprime to $n, a \in G_{n}$ a group of order $\varphi(n)$. Thus

$$
a^{\varphi(n)}=1 \in \mathbb{Z}_{n}
$$

and so

$$
a^{\varphi(n)}=1 \quad \bmod n .
$$

Example 13.5. What is the remainder when you divide 11^{60} by 15 ?
11 is prime and so it is coprime to 15 . We already computed $\varphi(15)=$ 8, so that by Euler's Theorem we know:

$$
11^{8}=1 \quad \bmod 15
$$

Therefore

$$
\begin{aligned}
11^{60} & =11^{56} \cdot 11^{4} \\
& =\left(11^{8}\right)^{7} \cdot 11^{4} \\
& =11^{4} \\
& =(-4)^{4} \\
& =2^{8} \\
& =1 \quad \bmod 15,
\end{aligned}
$$

by another application of Euler's Theorem, using the fact that 2 is coprime to 15 .

One potential drawback of Euler's Theorem is that it seems hard work to compute $\varphi(n)$ if n is large. Not so.

Definition 13.6. Let

$$
f: \mathbb{N} \longrightarrow \mathbb{N}
$$

be a function from the natural numbers to the natural numbers. We say that f is multiplicative if

$$
f(m n)=f(m) f(n)
$$

whenever m and n are coprime.
Proposition 13.7. The Euler phi-function is multiplicative.
Proof. We want to count the number of elements of $\mathbb{Z}_{m n}$ coprime to $m n$. This is the same as the number of units. Now by the Chinese remainder Theorem, the two rings

$$
\mathbb{Z}_{m n} \quad \text { and } \quad \mathbb{Z}_{m} \times \mathbb{Z}_{n}
$$

are isomorphic (this is where we use the fact that m and n are coprime). So the number of units in the first ring is the same as the number of units in the second ring.

Suppose that $(a, b) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. This is a unit if and only if we can find $(c, d) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ such that

$$
(a, b)(c, d)=\underset{2}{(a b, c d)}=(1,1) .
$$

It follows that $a b=1$ and $c d=1$, so that a and b are units. Thus $(a, b) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a unit if and only if $a \in \mathbb{Z}_{m}$ and $b \in \mathbb{Z}_{n}$ is a unit. The number of possibilities for a is $\varphi(m)$ and the number of possibilities for b is $\varphi(n)$. Thus the number of units in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is $\varphi(m) \varphi(n)$.

Putting all of this together we get

$$
\varphi(m n)=\varphi(m) \varphi(n)
$$

(13.7) already gets us quite far:

$$
\begin{aligned}
\varphi(15) & =\varphi(3 \cdot 5) \\
& =\varphi(3) \varphi(5) \\
& =(3-1)(5-1) \\
& =8
\end{aligned}
$$

the same answer we got as the slow way of eliminating all multiples of 3 and 5.

Unfortunately we get stuck if n is slighly more complicated:

$$
\begin{aligned}
\varphi(24) & =\varphi(3 \cdot 8) \\
& =\varphi(3) \varphi(8) \\
& =(3-1) \varphi(8)
\end{aligned}
$$

What we are missing is how to compute $\varphi(8)$ or more generally $\varphi\left(p^{k}\right)$ where p is prime.

Proposition 13.8. If p is a prime and k is a natural number then

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

Proof. We want to know the number of integers between 1 and p^{k} coprime to p. These are simply the number of integers between 1 and p^{k} which are not multiples of p. The multiples of p are

$$
1 \begin{array}{llllll}
1 & p & 2 p & 3 p & 4 p & \ldots
\end{array} p^{k-1} p=p^{k} .
$$

So there are p^{k-1} multiples of p between 1 and p^{k}. Hence there are

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

integers between 1 and p^{k} which are coprime to p.
Using (13.8) we see that

$$
\varphi(8)=8-4=4
$$

Thus

$$
\varphi(24)=8
$$

Theorem 13.9. If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}$ is the prime factorisation of the natural number n then

$$
\varphi(n)=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right)\left(p_{2}^{k_{2}}-p_{2}^{k_{2}-1}\right) \ldots\left(p_{m}^{k_{m}}-p_{m}^{k_{m}-1}\right) .
$$

Proof. We simply apply (13.7) and (13.8):

$$
\begin{aligned}
\varphi(n) & =\varphi\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}\right) \\
& =\varphi\left(p_{1}^{k_{1}}\right) \varphi\left(p_{2}^{k_{2}}\right) \ldots \varphi\left(p_{m}^{k_{m}}\right) \\
& =\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right)\left(p_{2}^{k_{2}}-p_{2}^{k_{2}-1}\right) \ldots\left(p_{m}^{k_{m}}-p_{m}^{k_{m}-1}\right) .
\end{aligned}
$$

