
16. The division algorithm

Note that if f(x) = g(x)h(x) then α is a zero of f(x) if and only if
α is a zero of one of g(x) or h(x). It is very useful therefore to write
f(x) as a product of polynomials.

What we need to understand is how to divide polynomials:

Theorem 16.1 (Division Algorithm). Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
∑

aix
i

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0 =
∑

bix
i

be two polynomials over a field F of degrees n and m > 0.
Then there are unique polynomials q(x) and r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x)

and either r(x) = 0 or the degree of r(x) is less than the degree m of
g(x).

Proof. We proceed by induction on the degree n of f(x). If the degree
n of f(x) is less than the degree m of g(x), there is nothing to prove,
take q(x) = 0 and r(x) = f(x). Suppose the result holds for all degrees
less than the degree n of f(x).

Put q0(x) = cxn−m, where c = an/bm. Let f1(x) = f(x)− q1(x)g(x).
Then f1(x) has degree less than g. By induction then,

f1(x) = q1(x)g(x) + r(x),

where r(x) has degree less than g(x). It follows that

f(x) = f1(x) + q0(x)f(x)

= (q0(x) + q1(x))f(x) + r(x)

= q(x)f(x) + r(x),

where q(x) = q0(x) + q1(x). �

Note that this is the usual algortihm. Attack the leading terms first,
get some sort of approximation to the quotient, find the difference
and keep going. As usual, we will call q(x) the quotient and r(x) the
remainder.

Example 16.2. Let’s find the quotient and the remainder when we
divide f(x) = x7 + 2x6 + 3x5 + 4x4 +x3 + 4x+ 3 by g(x) = x3 + 2x+ 1,
where we consider these polynomials inside the polynomial ring Z5[x].
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We present this the usual way:
So the remainder is x2+x+1 and the quotient is x4+2x3+x2+4x+2,

x7+2x6+3x5+4x4+x3+4x+3 = (x4+2x3+x2+4x+2)(x3+2x+1)+(x2+x+1).

Corollary 16.3. α ∈ F is a zero of f(x) ∈ F [x] if and only if x − α
is a factor of f(x).

Proof. Suppose that x − α is a factor of f(x). Then we may find
g(x) ∈ F [x] such that f(x) = (x−α)g(x). If we apply the function φα,
evaluation at α, then we get

φα(f(x)) = φα((x− a)g(x))

= φα(x− a)φα(g(x))

= (α− α)φα(g(x))

= 0φα(g(x))

= 0.

Conversely suppose that α is a zero of f(x). By the division algor-
tihm we may find q(x) and r(x) such that

f(x) = q(x)(x− a) + r(x),

where either r(x) is zero or its degree is zero. Thus r(x) = r0 is a
constant, possibly zero. If we apply the function φα, evaluation at α,
then we get

φα(f(x)) = φα(q(x)(x− a) + r(x))

= φα(x− a)φα(q(x)) + φα(r(x))

= r0

= 0.

Thus r(x) = 0 and so x− α is a factor of f(x). �

Example 16.4. Let’s look at

x4 + 3x3 + 2x+ 4 ∈ Z5[x].

First note that 1 is a zero of this polynomial. So by (16.3), we may
write

x4 + 3x3 + 2x+ 4 = (x− 1)f1(x).

Let’s find f1(x) using the division algortihm:

x4 + 3x3 + 2x+ 4 = (x− 1)(x3 + 4x2 + 4x+ 1).

Note that 1 is again a zero of x3 + 4x2 + 4x+ 1. So by (16.3), we may
write

x3 + 4x2 + 4x+ 1 = (x− 1)f2(x).
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Let’s find f2(x) using the division algortihm:

x3 + 4x2 + 4x+ 1 = (x− 1)(x2 + 4).

Note that 1 is yet again a zero of x2 + 4. So by (16.3), we may write

x2 + 4 = (x− 1)f3(x).

Let’s find f3(x) using the division algortihm:

x2 + 4 = (x− 1)(x+ 1).

Putting all of this together, it follows that

x4 + 3x3 + 2x+ 4 = (x− 1)3(x+ 1).

Corollary 16.5. A non-zero polynomial f(x) ∈ F [x] of degree n has
at most n zeroes in F .

Proof. By induction on the degree of f(x). If f(x) has degree zero then
f(x) is a non-zero constant and so f(x) has no zeroes.

Otherwise if α is a zero of f(x) then (16.3) implies that x − α is a
factor of f(x). So we can write

f(x) = (x− α)g(x),

where g(x) has degree n − 1. By induction g(x) has at most n − 1
zeroes and so f(x) has at most n zeroes, the zeroes of g(x) plus one
more for α if it is not a zero of g(x). �

Corollary 16.6. If G is a finite subgroup of the multiplicative group
F ∗ of non-zero elements of F then G is cyclic.

Proof. By the Fundamental theorem of finitely generated abelian groups,
G is isomorphic to a product of cyclic groups, of order a power of a
prime,

G ' Zd1 × Zd2 × · · · × Zdr .
We will use multiplicative notation for the both the LHS and the RHS.

Let m be the least common multiple of d1, d2, . . . , dr. Then

m ≤ d1d2 . . . dr.

If ai ∈ Zdi then adi = 1 and so

am = 1

as di divides m.
Thus

αm = 1,

for all α ∈ G. But then every element α of G is a zero of xm − 1. As
G has d1d2 . . . dr elements and a polynomial of degree m has at most
m zeroes it follows that m = d1d2 . . . dr. But this can only happen if
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d1, d2, . . . , dr are powers of distinct primes, in which case G is cyclic of
order m. �

It might help to understand this argument by going through a con-
crete example:

Example 16.7. Consider the non-zero elements G of Z181.

Note that 181 is a prime, so that Z181 is a field. G is the set of all
units which is a finite group. G has 180 = 181−1 elements. The prime
factorisation of

180 = 22 · 32 · 5.
G is a finite abelian group. So it is isomorphic to one of

(1) Z2 × Z2 × Z3 × Z3 × Z5;
(2) Z2 × Z2 × Z9 × Z5;
(3) Z4 × Z3 × Z3 × Z5;
(4) Z4 × Z9 × Z5.

The last group is cyclic. We have to eliminate the other three cases.
In the first case every element of G has order dividing 2 · 3 · 5 = 30.
In the second case every element has dividing 2 · 9 · 5 = 90 and in the
third case every element has order dividing 4 · 3 · 5 = 60.

But if α has order dividing 30 it is a zero of x30 − 1; if α has order
dividing 90 it is a zero of x90 − 1; and if α has order dividing 60 it is a
zero of x60 − 1. As G has order 180 and a polynomial of degree 30, 90
and 60 has at most 30, 90 or 60 zeroes, it follows that the first three
cases cannot happen.

Thus the fourth case happens and G is cyclic.
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