18. Ideals and Quotient Rings

The theory of ideals and quotient rings parallels the theory of normal subgroups and quotient groups. We start with the basic properties:

Proposition 18.1. Let $\phi: R \longrightarrow R'$ be a homomorphism of rings

- (1) If $0 \in R$ is the additive identity then $\phi(0) \in R'$ is the additive identity in R'.
- (2) If $a \in R$ then $\phi(-a) = -\phi(a)$.
- (3) If S is a subring of R then $\phi[S]$ is a subring of R'.
- (4) If S' is a subring of R' then $\phi^{-1}[S']$ is a subring of R.
- (5) If R has unity 1 then $\phi(1)$ is unity in $\phi[R]$.

Proof. As ϕ is a ring homomorphism it is a group homomorphism of the underlying additive groups. (1) and (2) follow from the case of groups homomorphisms.

For (3) we already know that $\phi[S]$ is an an additive subgroup of R'. If $\phi(a)$ and $\phi(b) \in \phi[S]$ then

$$\phi(a)\phi(b) = \phi(ab) \in \phi[S].$$

Thus $\phi[S]$ is closed under multiplication and so $\phi[S]$ is a subring of R'. This is (3).

For (4) we already know that $\phi^{-1}[S']$ is an an additive subgroup of R. If a and $b \in \phi^{-1}[S]$ then $\phi(a)$ and $\phi(b) \in S'$ and we have

$$\phi(ab) = \phi(a)\phi(b) \in \phi^{-1}[S'].$$

It follows that $ab \in \phi^{-1}[S']$. Thus $\phi^{-1}[S']$ is closed under multiplication and so $\phi^{-1}[S']$ is a subring of R. This is (4).

Now suppose that $\phi(a) \in \phi[R]$. Then

$$\phi(1)\phi(a) = \phi(1a)$$
$$= \phi(a).$$

Thus $\phi(1)$ acts as unity in $\phi[R]$. This is (5).

We recall the definition of the kernel.

Definition 18.2. If $\phi \colon R \longrightarrow R'$ is a homomorphism of rings then the subring

$$\phi^{-1}[0'] = \{ r \in R \, | \, \phi(r) = 0' \, \}$$

is called the **kernel** of ϕ , denoted Ker ϕ .

Proposition 18.3. If $\phi: R \longrightarrow R'$ is a homomorphism of rings and $H = \text{Ker } \phi$ is the kernel then

$$\phi^{-1}[\phi(a)] = a + H.$$

Proof. Immediate since ϕ is a group homomorphism.

Corollary 18.4. A homomorphism of rings $\phi \colon R \longrightarrow R'$ is a one to one if and only if Ker $\phi = \{0\}$.

Proof. Immediate since ϕ is a group homomorphism.

Theorem 18.5 (First isomorphism theorem). Let $\phi: R \longrightarrow R'$ be a ring homomorphism with kernel H.

Then R/H, the set of left cosets under addition, is a ring, with the following addition and multiplication:

$$(a + H) + (b + H) = a + b + H$$
 and $(a + H)(b + H) = ab + H.$

Furthermore the map

 $\mu \colon R/H \longrightarrow \phi[R] \qquad given \ by \qquad \mu(a+H) = \phi(a),$

is an isomorphism.

Proof. As usual, we only need to check the new part, the part which relates to multiplication.

The key is to check that the given rule for multiplication is welldefined. Suppose that

$$a_1 + H = a + H$$
 and $b_1 + H = b + H$.

Then $a_1 = a + h_1$ and $b_1 = b + h_2$ for some h_1 and $h_2 \in H$. Consider the product

$$c_1 = a_1 b_1$$

= $(a + h_1)(b + h_2)$
= $ab + ah_2 + h_1b + h_1h_2$

We have to show that c_1 belongs to the same left coset as ab. If we apply ϕ to both sides we get

$$\phi(c_1) = \phi(ab + ah_2 + h_1b + h_1h_2)$$

= $\phi(c) + \phi(a)\phi(h_2) + \phi(h_1)\phi(b) + \phi(h_1)\phi(h_2)$
= $\phi(c) + \phi(a)0 + 0\phi(b) + 00$
= $\phi(c)$.

Thus $\phi(c_1 - c) = 0$ so that $c_1 - c \in H$ and so $a_1b_1 + H = ab + H$.

The fact that multiplication is associative and satisfies the distributive now follows easily.

We already know that μ is well-defined, it is one to one, onto $\phi[R]$ and a group homomorphism. We only have to check that μ respects multiplication. This is again standard:

$$\mu((a+H)(b+H)) = \mu(ab+H)$$

= $\phi(ab)$
= $\phi(a)\phi(b)$
= $\mu(a+H)\mu(b+H).$

It is natural to try to isolate the key property of the kernel that makes all of this work. We already understand that the kernel has to be a normal subgroup for the set of left cosets R/H to be a group under addition. The proof of (18.5) suggests that we should require also that if $h \in H$ then ah and hb belong to H for any a and b.

Lemma 18.6. Let H be a subring of the ring R.

Then the rule

(a+H)(b+H) = ab+H

gives a well-defined multiplication if and only if ah and hb belong to H for all a and b in R and $h \in H$.

Proof. Suppose first that ah and hb belong to H for all a and b in R and $h \in H$.

Suppose that $a_1 + H = a + H$ and $b_1 + H = b + H$. Then we may find h_1 and h_2 such that $a_1 = a + h_1$ and $b_1 = b + h_2$. Let $c_1 = a_1b_1$ and c = ab. The fact that multiplication is well-defined is equivalent to saying that c_1 lies in the same left coset as c.

We check this:

$$c_1 = a_1 b_1$$

= $(a + h_1)(b + h_2)$
= $ab + ah_2 + h_1 a_1 + h_1 h_2$

Now ah_2 , h_1b and h_1h_2 belong to H (the third product for two reasons). Thus the sum $h = ah_2 + h_1a_1 + h_1h_2$ belongs to H. Therefore $c_1 = c + h$ so that $c_1 + H = c + H$. Hence the given rule of multiplication is welldefined.

Conversely suppose that the given rule of multiplication is welldefined. Pick $a \in H$ and consider the product (a+H)H. The standard way to compute this product is:

$$(a + H)H = (a + H)(0 + H)$$

= $a0 + H$
= $0 + H$
= H .

But if $h \in H$ then we can also compute this product as:

$$(a+H)H = (a+H)(h+H)$$
$$= ah + H.$$

For the product to be well-defined we must have ah + H = H, that is, $ah \in H$.

By symmetry we must have $bh \in H$, computing the product H(b + H).

Definition 18.7. An *ideal* I in a ring R is an additive subgroup such that

$$aI \subset I$$
 and $Ib \subset I$,

for all a and $b \in R$.

Example 18.8. $n\mathbb{Z}$ is an ideal.

We already know it is an additive subgroup. As

$$a(rn) = (ra)n \in n\mathbb{Z}$$
 and $(rn)b = (rb)n \in n\mathbb{Z}$

it is also an ideal.

Example 18.9. Let F be the ring of all functions from \mathbb{R} to \mathbb{R} and let C be the subring of all constant functions. Then C is not an ideal.

Indeed, $2 \in C$ is a constant function and e^x belongs to F but $2e^x$ is not a constant function.

Example 18.10. Let F be the ring of all functions from \mathbb{R} to \mathbb{R} and let I be the subring of all functions which vanish at -3. Then I is an ideal.

Suppose that $f(x) \in I$ and $g(x) \in F$. Then

$$(fg)(-3) = f(-3)g(-3)$$

= 0g(-3)
= 0.

Thus I is an ideal.

Corollary 18.11. Let R be a ring and let I be an ideal. Then R/I is a ring with the following addition and multiplication:

(a+H) + (b+H) = a+b+H and (a+H)(b+H) = ab+H.

Definition 18.12. The ring R/I above is called the quotient ring.

Theorem 18.13. Let R be a ring and let I be an ideal.

Then the natural map

 $\gamma \colon R \longrightarrow R/I \qquad given \ by \qquad r \longrightarrow r+I,$

is a ring homomorphism with kernel I.

Proof. The only thing to check is that γ respects multiplication:

$$\gamma(xy) = xy + I$$

= $(x + I)(y + I)$
= $\gamma(x)\gamma(y)$.

As before, putting all of this together we get:

Theorem 18.14 (First isomorphism theorem). Let $\phi: R \longrightarrow R'$ be a ring homomorphism with kernel I. Then $\phi[R]$ is a ring and the map

 $\mu \colon R/I \longrightarrow \phi[R] \qquad given \ by \qquad \gamma(r+I) = \phi(r)$

is an isomorphism. If the map

 $\gamma \colon R \longrightarrow R/I \qquad \text{is given by} \qquad \gamma(r) = r + I$ then $\phi(r) = \mu(\gamma(r)).$