18. Ideals and Quotient Rings

The theory of ideals and quotient rings parallels the theory of normal subgroups and quotient groups. We start with the basic properties:
Proposition 18.1. Let $\phi: R \longrightarrow R^{\prime}$ be a homomorphism of rings
(1) If $0 \in R$ is the additive identity then $\phi(0) \in R^{\prime}$ is the additive identity in R^{\prime}.
(2) If $a \in R$ then $\phi(-a)=-\phi(a)$.
(3) If S is a subring of R then $\phi[S]$ is a subring of R^{\prime}.
(4) If S^{\prime} is a subring of R^{\prime} then $\phi^{-1}\left[S^{\prime}\right]$ is a subring of R.
(5) If R has unity 1 then $\phi(1)$ is unity in $\phi[R]$.

Proof. As ϕ is a ring homomorphism it is a group homomorphism of the underlying additive groups. (1) and (2) follow from the case of groups homomorphisms.

For (3) we already know that $\phi[S]$ is an an additive subgroup of R^{\prime}. If $\phi(a)$ and $\phi(b) \in \phi[S]$ then

$$
\phi(a) \phi(b)=\phi(a b) \in \phi[S] .
$$

Thus $\phi[S]$ is closed under multiplication and so $\phi[S]$ is a subring of R^{\prime}. This is (3).

For (4) we already know that $\phi^{-1}\left[S^{\prime}\right]$ is an an additive subgroup of R. If a and $b \in \phi^{-1}[S]$ then $\phi(a)$ and $\phi(b) \in S^{\prime}$ and we have

$$
\phi(a b)=\phi(a) \phi(b) \in \phi^{-1}\left[S^{\prime}\right] .
$$

It follows that $a b \in \phi^{-1}\left[S^{\prime}\right]$. Thus $\phi^{-1}\left[S^{\prime}\right]$ is closed under multiplication and so $\phi^{-1}\left[S^{\prime}\right]$ is a subring of R. This is (4).

Now suppose that $\phi(a) \in \phi[R]$. Then

$$
\begin{aligned}
\phi(1) \phi(a) & =\phi(1 a) \\
& =\phi(a) .
\end{aligned}
$$

Thus $\phi(1)$ acts as unity in $\phi[R]$. This is (5).
We recall the definition of the kernel.
Definition 18.2. If $\phi: R \longrightarrow R^{\prime}$ is a homomorphism of rings then the subring

$$
\phi^{-1}\left[0^{\prime}\right]=\left\{r \in R \mid \phi(r)=0^{\prime}\right\}
$$

is called the kernel of ϕ, denoted $\operatorname{Ker} \phi$.
Proposition 18.3. If $\phi: R \longrightarrow R^{\prime}$ is a homomorphism of rings and $H=\operatorname{Ker} \phi$ is the kernel then

$$
\phi^{-1}[\phi(a)]=a+H
$$

Proof. Immediate since ϕ is a group homomorphism.
Corollary 18.4. A homomorphism of rings $\phi: R \longrightarrow R^{\prime}$ is a one to one if and only if $\operatorname{Ker} \phi=\{0\}$.

Proof. Immediate since ϕ is a group homomorphism.
Theorem 18.5 (First isomorphism theorem). Let $\phi: R \longrightarrow R^{\prime}$ be a ring homomorphism with kernel H.

Then R / H, the set of left cosets under addition, is a ring, with the following addition and multiplication:
$(a+H)+(b+H)=a+b+H \quad$ and $\quad(a+H)(b+H)=a b+H$.
Furthermore the map

$$
\mu: R / H \longrightarrow \phi[R] \quad \text { given by } \quad \mu(a+H)=\phi(a),
$$

is an isomorphism.
Proof. As usual, we only need to check the new part, the part which relates to multiplication.

The key is to check that the given rule for multiplication is welldefined. Suppose that

$$
a_{1}+H=a+H \quad \text { and } \quad b_{1}+H=b+H .
$$

Then $a_{1}=a+h_{1}$ and $b_{1}=b+h_{2}$ for some h_{1} and $h_{2} \in H$. Consider the product

$$
\begin{aligned}
c_{1} & =a_{1} b_{1} \\
& =\left(a+h_{1}\right)\left(b+h_{2}\right) \\
& =a b+a h_{2}+h_{1} b+h_{1} h_{2} .
\end{aligned}
$$

We have to show that c_{1} belongs to the same left coset as $a b$. If we apply ϕ to both sides we get

$$
\begin{aligned}
\phi\left(c_{1}\right) & =\phi\left(a b+a h_{2}+h_{1} b+h_{1} h_{2}\right) \\
& =\phi(c)+\phi(a) \phi\left(h_{2}\right)+\phi\left(h_{1}\right) \phi(b)+\phi\left(h_{1}\right) \phi\left(h_{2}\right) \\
& =\phi(c)+\phi(a) 0+0 \phi(b)+00 \\
& =\phi(c) .
\end{aligned}
$$

Thus $\phi\left(c_{1}-c\right)=0$ so that $c_{1}-c \in H$ and so $a_{1} b_{1}+H=a b+H$.
The fact that multiplication is associative and satisfies the distributive now follows easily.

We already know that μ is well-defined, it is one to one, onto $\phi[R]$ and a group homomorphism. We only have to check that μ respects
multiplication. This is again standard:

$$
\begin{aligned}
\mu((a+H)(b+H)) & =\mu(a b+H) \\
& =\phi(a b) \\
& =\phi(a) \phi(b) \\
& =\mu(a+H) \mu(b+H) .
\end{aligned}
$$

It is natural to try to isolate the key property of the kernel that makes all of this work. We already understand that the kernel has to be a normal subgroup for the set of left cosets R / H to be a group under addition. The proof of (18.5) suggests that we should require also that if $h \in H$ then $a h$ and $h b$ belong to H for any a and b.

Lemma 18.6. Let H be a subring of the ring R.
Then the rule

$$
(a+H)(b+H)=a b+H
$$

gives a well-defined multiplication if and only if ah and hb belong to H for all a and b in R and $h \in H$.

Proof. Suppose first that $a h$ and $h b$ belong to H for all a and b in R and $h \in H$.

Suppose that $a_{1}+H=a+H$ and $b_{1}+H=b+H$. Then we may find h_{1} and h_{2} such that $a_{1}=a+h_{1}$ and $b_{1}=b+h_{2}$. Let $c_{1}=a_{1} b_{1}$ and $c=a b$. The fact that multiplication is well-defined is equivalent to saying that c_{1} lies in the same left coset as c.

We check this:

$$
\begin{aligned}
c_{1} & =a_{1} b_{1} \\
& =\left(a+h_{1}\right)\left(b+h_{2}\right) \\
& =a b+a h_{2}+h_{1} a_{1}+h_{1} h_{2} .
\end{aligned}
$$

Now $a h_{2}, h_{1} b$ and $h_{1} h_{2}$ belong to H (the third product for two reasons). Thus the sum $h=a h_{2}+h_{1} a_{1}+h_{1} h_{2}$ belongs to H. Therefore $c_{1}=c+h$ so that $c_{1}+H=c+H$. Hence the given rule of multiplication is welldefined.

Conversely suppose that the given rule of multiplication is welldefined. Pick $a \in H$ and consider the product $(a+H) H$. The standard way to compute this product is:

$$
\begin{aligned}
(a+H) H & =(a+H)(0+H) \\
& =a 0+H \\
& =0+H \\
& =H .
\end{aligned}
$$

But if $h \in H$ then we can also compute this product as:

$$
\begin{aligned}
(a+H) H & =(a+H)(h+H) \\
& =a h+H .
\end{aligned}
$$

For the product to be well-defined we must have $a h+H=H$, that is, $a h \in H$.

By symmetry we must have $b h \in H$, computing the product $H(b+$ $H)$.

Definition 18.7. An ideal I in a ring R is an additive subgroup such that

$$
a I \subset I \quad \text { and } \quad I b \subset I,
$$

for all a and $b \in R$.
Example 18.8. $n \mathbb{Z}$ is an ideal.
We already know it is an additive subgroup. As

$$
a(r n)=(r a) n \in n \mathbb{Z} \quad \text { and } \quad(r n) b=(r b) n \in n \mathbb{Z}
$$

it is also an ideal.
Example 18.9. Let F be the ring of all functions from \mathbb{R} to \mathbb{R} and let C be the subring of all constant functions. Then C is not an ideal.

Indeed, $2 \in C$ is a constant function and e^{x} belongs to F but $2 e^{x}$ is not a constant function.

Example 18.10. Let F be the ring of all functions from \mathbb{R} to \mathbb{R} and let I be the subring of all functions which vanish at -3 . Then I is an ideal.

Suppose that $f(x) \in I$ and $g(x) \in F$. Then

$$
\begin{aligned}
(f g)(-3) & =f(-3) g(-3) \\
& =0 g(-3) \\
& =0 .
\end{aligned}
$$

Thus I is an ideal.
Corollary 18.11. Let R be a ring and let I be an ideal.
Then R / I is a ring with the following addition and multiplication:
$(a+H)+(b+H)=a+b+H \quad$ and $\quad(a+H)(b+H)=a b+H$.
Definition 18.12. The ring R / I above is called the quotient ring.

Theorem 18.13. Let R be a ring and let I be an ideal.
Then the natural map

$$
\gamma: R \longrightarrow R / I \quad \text { given by } \quad r \longrightarrow r+I,
$$

is a ring homomorphism with kernel I.
Proof. The only thing to check is that γ respects multiplication:

$$
\begin{aligned}
\gamma(x y) & =x y+I \\
& =(x+I)(y+I) \\
& =\gamma(x) \gamma(y) .
\end{aligned}
$$

As before, putting all of this together we get:
Theorem 18.14 (First isomorphism theorem). Let $\phi: R \longrightarrow R^{\prime}$ be a ring homomorphism with kernel I. Then $\phi[R]$ is a ring and the map

$$
\mu: R / I \longrightarrow \phi[R] \quad \text { given by } \quad \gamma(r+I)=\phi(r)
$$

is an isomorphism. If the map

$$
\gamma: R \longrightarrow R / I \quad \text { is given by } \quad \gamma(r)=r+I
$$

then $\phi(r)=\mu(\gamma(r))$.

