
2. Plane isometries

Definition 2.1. We say that a permutation φ : R2 −→ R2 is an isom-
etry if φ preserves distances, that is, the distance between two points
P and Q is the same as the distance between their images φ(P ) and
φ(Q).

Isometries are sometimes also called rigid motions.

Lemma 2.2. The set of all plane isometries is a subgroup of the group
of all permutations of R2.

Proof. Suppose that φ and ψ are two isometries and let ξ = ψ ◦ φ be
the composition. Then

ξ(P ) = ψ(φ(P )) and ξ(Q) = ψ(φ(Q)).

Then the distance between ξ(P ) and ξ(Q) is the same as the distance
between φ(P ) and φ(Q), as ψ is an isometry. On the other hand, the
distance between φ(P ) and φ(Q) is the same as the distance between
P and Q. Thus the distance between ξ(P ) and ξ(Q) is the same as the
distance between P and Q.

Thus ξ is an isometry and the set of all plane isometries is closed
under composition.

The identity map is obviously an isometry. If φ is an isometry then
so is φ−1. Thus the set of all isometries contains the identity and is
closed under taking inverses.

It follows that the set of all isometries is a subgroup of the permu-
tation group. �

In fact isometries come in four different types:

translation τ : Slide every point by the same vector, that is, by the same dis-
tance and the same direction.

rotation ρ: Rotate every point around a fixed point P through an angle θ.
reflection µ: Reflect every point across a line L.

glide reflection γ: The composition of a translation and a reflection in a line fixed
by the translation.

For example, γ(x, y) = (x− 3,−y) is a glide reflection in the x-axis.
We can separate these four types into two pairs: the first two pre-

serve orientation and the second two reverse orientation; if you
take a clock and apply an orientation reversing isometry the clock will
run backwards.

Given a subset S of R one can look at the subgroup of isometries
which fix S (as a set).
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Theorem 2.3. Every finite group of isometries of the plane is isomor-
phic to either Zn or to a dihedral group Dn, for some positive integer
n.

Sketch of proof. Suppose that φ1, φ2, . . . , φm are the elements of G. Let

Pi = (xi, yi) = φi(0, 0)

and set

P = (x̄, ȳ) =

(
x1 + x2 + · · ·+ xm

m
,
y1 + y2 + · · ·+ ym

m

)
.

Then P is the centroid of the points P1, P2, . . . , Pm. Suppose that
φj ∈ G. Then φjφi = φk ∈ G some k and so

φj(Pi) = φj(φi(0, 0)) = φk(0, 0) = Pk.

Thus the elements of G permute the points P1, P2, . . . , Pm and so they
fix the centroid P .

Looking at the four possible types of isometry only two of them fix
a point, rotation and reflection. Consider the orientation preserving
elements H of G. These are the rotations. A rotation only fixes one
point, so the elements of H are rotations about the centroid. Since the
product of two rotations about the same point is a rotation, H is a
subgroup of G. Let θ be the smallest angle of rotation. It is not hard
to see that every element represents a rotation through a multiple of
θ. In other words, if ρ represents rotations about P through an angle
of θ then

H = 〈θ〉,
a cyclic subgroup of G. Note that the product of two orientation re-
versing isometries is orientation preserving. So either every element
of G is orientation preserving or m is even and half the elements are
orientation preserving. In the first case G = H ' Zm.

Otherwise G contains one reflection µ about a line L through P .
In this case the coset Hµ contains all of the reflections. Pick a point
Q 6= P on the line L and consider the regular n-gon given by the
images of Q under rotation. Then the elements of H correspond to all
rotations of the n-gon and µ corresponds to a reflection about all line
through oppositve vertices of the n-gon. Thus G is isomorphic to the
dihedral group Dn. �

It is interesting to think a little bit about infinite groups of sym-
metries. We start with symmetries of a discrete frieze. Start with a
pattern of bounded width and height and repeat it along an infinite
strip. This is the sort of pattern you might see along the wall of a
room. The symmetries of such a pattern is called a frieze group.
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For example, suppose we start with an integral sign translated by
one unit horizontally in both directions. One obvious symmetry is
translation by one unit τ . But we may pick the centre of any integral
sign and rotate by 180◦, call this ρ. One can check that

ρ−1τρ = τ−1.

If one compares this with what happens for the Dihedral group Dn, it
is natural to call this infinite frieze group D∞.

Another possibility is to replace the integral sign by a D. In this
case as well as the translation τ one can reflect in a horizontal line;
call this isometry µ. In this case the two isometries commute and the
group of isometries is isomorphic to Z× Z2. Yet another possibility is
to replace D with A. In this case one can reflect in a vertical line and
the resulting isometry group is again D∞.

A much more sophisticated example arises if one takes a sequence of
two rows of D’s, where the top row is shifted halfway across. In this
case there is a glide reflection; translate half way across and then flip
along the horizontal line dividing the two rows.

In fact there is a complete classification of all possible groups which
arise:

Z, D∞, Z× Z2, D∞ × Z2.

Note that the same group is associated with different patterns.
It is also interesting to consider what happens if you tile the plane

by translating a figure in two different directions; the resulting group of
isometries is called a wallpaper group or a crystallographic group.

One possibility is to start with a unit square and translate it both
horizontally and vertically one unit. The symmetry group of this pat-
tern obviously contains Z×Z, the translations in both directions. But
it also contains the symmetries of a square D4.
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