4. The kernel

We now come to the key:
Definition 4.1. Let $\phi: G \longrightarrow G^{\prime}$ be a group homomorphism. The kernel of ϕ, denoted $\operatorname{Ker} \phi$, is the inverse image of the identity,

$$
\operatorname{Ker} \phi=\phi^{-1}\left[\left\{e^{\prime}\right\}\right]=\left\{g \in G \mid \phi(g)=e^{\prime}\right\}
$$

By (3.10.4) the kernel is a subgroup of G.
Example 4.2. Let $A \in M_{m, n}(\mathbb{R})$ be an $m \times n$ matrix with real entries. Define a map

$$
\phi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad \text { by the rule } \quad \vec{v} \longrightarrow A \vec{v} .
$$

We check that ϕ is a group homomorphism. Suppose that \vec{v} and \vec{w} are in \mathbb{R}^{n}. We have

$$
\begin{aligned}
\phi(\vec{v}+\vec{w}) & =A(\vec{v}+\vec{w}) \\
& =A \vec{v}+A \vec{w} \\
& =\phi(\vec{v})+\phi(\vec{w}) .
\end{aligned}
$$

Thus ϕ is a group homomorphism. In this case the kernel of ϕ is the null space of A, the set of solutions to the homogeneous equation

$$
A \vec{x}=\overrightarrow{0}
$$

Theorem 4.3. Let $\phi: G \longrightarrow G^{\prime}$ be a group homomorphism and let $H=\operatorname{Ker} \phi$.

Then

$$
\phi^{-1}[\{\phi(a)\}]=\{g \in G \mid \phi(g)=\phi(a)\}=a H=H a .
$$

In particular the partition of G into left cosets is exactly the same as the partition of G into right cosets.

Proof. We want to prove that

$$
\{g \in G \mid \phi(g)=\phi(a)\}=a H .
$$

We first show that the LHS is a subset of the RHS. Pick an element g of the LHS, so that $\phi(g)=\phi(a)$. Then, multiplying on the left by $\phi(a)^{-1}$, we have

$$
\phi(a)^{-1} \phi(g)=e^{\prime} .
$$

By (3.10.2) we know that $\phi\left(a^{-1}\right)=\phi(a)^{-1}$ and so

$$
e^{\prime}=\phi\left(a^{-1}\right) \phi(g)=\phi\left(a^{-1} g\right) .
$$

Thus $a^{-1} g \in H$. Therefore $a^{-1} g=h \in H$ so that $g=a h \in a H$. Thus the LHS is a subset of the RHS.

Now pick an element g of the RHS, so that $g \in a H$. Then we can find $h \in H$ so that $g=a h$. In this case $h=a^{-1} g$. We have

$$
\begin{aligned}
e^{\prime} & =\phi(h) \\
& =\phi\left(a^{-1} g\right) \\
& =\phi\left(a^{-1}\right) \phi(g) \\
& =\phi(a)^{-1} \phi(g) .
\end{aligned}
$$

Multiplying both sides on the left by $\phi(a)$ we see that $\phi(g)=\phi(a)$. Thus the RHS is a subset of the LHS. Therefore

$$
\{g \in G \mid \phi(g)=\phi(a)\}=a H
$$

By symmetry

$$
\{g \in G \mid \phi(g)=\phi(a)\}=H a
$$

This is the first statement.
We want to show that the left cosets and the right cosets give the same partition. Pick $a \in G$. Then a belongs to a left coset and a right coset and we just have to show they are the same. But

$$
a H=\{g \in G \mid \phi(g)=\phi(a)\}=H a
$$

This is the second statement.
One can rephrase the first part of (4.3) as follows. The inverse image of any element of $\phi[G]$ is a left coset of H. For example if H is finite then the inverse image of every point of $\phi[G]$ has the same size, the number of elements of H.

Another way to state the second part is that the elements of $\phi[G]$ are nothing more than the left cosets of H. In fact the elements of $\phi[G]$ are also the right cosets of H.

Example 4.4. Let $\phi: \mathbb{C}^{*} \longrightarrow \mathbb{R}^{+}$be the map which sends a non-zero complex number to its modulus, $\phi(z)=|z|$.

Here $\mathbb{C}^{*}=\mathbb{C}-\{0\}$ and \mathbb{R}^{+}is the set of positive real numbers under multiplication. The modulus of a complex number is the distance to the origin; if we use polar coordinates to represent the complex number as $z=r e^{i \theta}$, then $|z|=r$.

Then ϕ is a group homomorphism.

$$
\begin{aligned}
\phi\left(z_{1} z_{2}\right) & =\left|z_{1} z_{2}\right| \\
& =\left|z_{1}\right|\left|z_{2}\right| \\
& =\phi\left(z_{1}\right) \phi\left(z_{2}\right) .
\end{aligned}
$$

The identity in \mathbb{R}^{+}is 1 so the kernel U of ϕ consists of all complex numbers of modulus one. This is the unit circle in the complex plane. The inverse image of the real number r is all complex numbers of modulus r; this is a circle of radius r centred at the origin.
Example 4.5. Recall we defined a map in (3.8)

$$
\gamma: \mathbb{Z} \longrightarrow \mathbb{Z}_{n} \quad \text { by the rule } \quad \gamma(m)=r
$$

where r is the remainder after you divide n into m,
The kernel of ϕ is all integers with zero remainder, that is, all integers divisible by n. The inverse image of 1 is the set of all integers with remainder one. Any such integer is 1 plus a multiple of n. More generally the inverse image of r is the set of all integers with remainder r. Any such integer is r plus a multiple of n.
Corollary 4.6. A group homomorphism $\phi: G \longrightarrow G^{\prime}$ is one to one if and only if $\operatorname{Ker} \phi=\{e\}$.

Proof. One direction is clear. If ϕ is one to one then the inverse image of e^{\prime} contains only one element, e, so that $\operatorname{Ker} \phi=\{e\}$.

Now suppose that $\operatorname{Ker} \phi=\{e\}$. Then (4.3) implies that the inverse image of $\phi(a)$ is the coset $a H=\{a\}$. Thus ϕ is one to one.

Definition 4.7. A subgroup H of G is called normal if $g H=H g$, that is, the left coset containing g is the same as the right coset containing g, for all $g \in G$.
Corollary 4.8. If $\phi: G \longrightarrow G^{\prime}$ is a group homomorphism then the kernel is a normal subgroup of G.

Proof. This is the second statement of (4.3).

