6. Quotient groups II

Now suppose that we drop the hypothesis that H is the kernel of a homomorphism and replace this with the hypothesis that H is normal. Then we still get a group. The key thing to check is:

Theorem 6.1. Let H be a subgroup of a group G.
Then the following rule for multiplication of left cosets

$$
(a H)(b H)=a b H
$$

if and only if H is normal in G.
Proof. Suppose that this rule of multiplication is well-defined. Pick $a \in G$. We have to show that

$$
a H=H a .
$$

Pick $x \in a H$. There are two possible ways to define the product

$$
a H a^{-1} H
$$

The really obvious way is to say

$$
a H a^{-1} H=a a^{-1} H=e H=H
$$

As $a H=x H$ another way is to say

$$
a H a^{-1} H=x H a^{-1} H=x a^{-1} H
$$

If the rule of multiplication is well-defined we must have

$$
x a^{-1} H=H
$$

In this case $x a^{-1} \in H$, so that there is an element $h \in H$ such that $x a^{-1}=h$. Multiplying both sides of the right by a we get

$$
x=h a
$$

so that $x \in H a$. Thus the LHS is a subset of the RHS. By symmetry the RHS is a subset of the LHS. But then $a H=H a$. As a is arbitrary, H is normal.

We have already proved that if H is normal then multiplication of left cosets is well-defined but let's prove it again.

Suppose that H is normal. If $a^{\prime} H=a H$ and $b^{\prime} H=b H$ then $a^{\prime}=a h_{1}$ and $b^{\prime}=b h_{2}$, for some h_{1} and h_{2}. On the other hand, we may find $h_{3} \in H$ so that

$$
h_{1} b=b h_{3} \quad \underset{\substack{\text { since } \\ 1}}{ } \quad b H=H b .
$$

It follows that

$$
\begin{aligned}
a^{\prime} b^{\prime} & =\left(a h_{1}\right)\left(b h_{2}\right) \\
& =a\left(h_{1} b\right) h_{2} \\
& =a\left(b h_{3}\right) h_{2} \\
& =(a b)\left(h_{3} h_{2}\right) .
\end{aligned}
$$

Thus

$$
a^{\prime} b^{\prime} H=a b H
$$

and the multiplication is indeed well-defined.
Corollary 6.2. Let H be a normal subgroup of a group G.
Then the left cosets of H in G form a group with multiplication defined by

$$
(a H)(b H)=a b H
$$

Proof. We have already checked that this rule of multiplication is welldefined in (6.1). We first check associativity. Suppose that $a H, b H$ and cH are three left cosets. Then

$$
\begin{aligned}
a H(b H c H) & =a H(b c H) \\
& =a(b c) H \\
& =(a b) c H \\
& =(a b H) c H \\
& =(a H b H) c H .
\end{aligned}
$$

Thus we have associativity.
We claim that $e H=H$ is the identity. Suppose that $a H$ is another left coset. We have

$$
a H e H=a e H=a H=e a H=e H a H .
$$

Thus $e H$ is the identity.
Finally we check that $a^{-1} H$ is the inverse of $a H$. We have

$$
a H a^{-1} H=a a^{-1} H=e H=a^{-1} a H=a^{-1} H a H .
$$

Thus $a^{-1} H$ is the inverse of $a H$.
Definition 6.3. The group of left cosets with multiplication defined in (6.1) is called the quotient group, denoted G / H.

Example 6.4. If $n \mathbb{Z}=\langle n\rangle$ is the subgroup of \mathbb{Z} of all multiples of n then $\langle n\rangle$ is a normal subgroup.

Indeed it is the kernel of the map

$$
\gamma: \mathbb{Z} \longrightarrow \mathbb{Z}_{n}
$$

which sends a number to its remainder. The quotient group

$$
\mathbb{Z} /\langle n\rangle
$$

is isomorphic to \mathbb{Z}_{n} the integers modulo n.
Example 6.5. Let $A_{3} \subset S_{3}$ be the alternating subgroup.
Then A_{3} is the kernel of the homomorphism $\phi: S_{3} \longrightarrow \mathbb{Z}_{2}$ and so A_{3} is normal. Let's consider the group table of $G=S_{3}$.

$*$	e	$(1,2,3)$	$(1,3,2)$	$(2,3)$	$(1,3)$	$(1,2)$
e	e	$(1,2,3)$	$(1,3,2)$	$(2,3)$	$(1,3)$	$(1,2)$
$(1,2,3)$	$(1,2,3)$	$(1,3,2)$	e	$(1,2)$	$(2,3)$	$(1,3)$
$(1,3,2)$	$(1,3,2)$	e	$(1,2,3)$	$(1,3)$	$(1,2)$	$(2,3)$
$(2,3)$	$(2,3)$	$(1,3)$	$(1,2)$	e	$(1,2,3)$	$(1,3,2)$
$(1,3)$	$(1,3)$	$(1,2)$	$(2,3)$	$(1,3,2)$	e	$(1,2,3)$
$(1,2)$	$(1,2)$	$(2,3)$	$(1,3)$	$(1,2,3)$	$(1,3,2)$	e

Note that things have been arranged so that the first three entries in each row (and so column) are the elements of A_{3}. The index of A_{3} in S_{3} is $2=6 / 3$. So there are two left cosets, the elements of A_{3} and everything else. If you shade the elements of A_{3} one colour, say red, and everything else another colour, say blue, then we get the quotient group:

$$
\begin{array}{c|cc}
* & R & B \\
\hline R & R & B \\
B & B & R .
\end{array}
$$

Obviously this group is isomorphic to \mathbb{Z}_{2}.
On the other hand, the same thing won't work if we start with the subgroup $H=\{e,(1,2)\}$. In this case there are three left cosets,
$H=\{e,(1,2)\} \quad(1,2,3) H=\{(1,2,3),(1,3)\} \quad$ and $\quad(1,3,2) H=\{(1,3,2),(2,3))\}$.
Imagine these three cosets are represented by three colours, red, blue and yellow. How should we define the product of a red times a blue? Well, take a red element and a blue element and multiply them together. We could take e for a red and $(1,2,3)$ for a blue. Then $e(1,2,3)=(1,2,3)$, which is blue. So, from this point of view, we should say red times blue is blue. But now suppose we take $(1,2)$ and $(1,3)$ another red and blue. Then $(1,2)(1,3)=(1,3,2)$, a yellow. So, from this point of view, we should say red times blue is yellow. So there is no consistent way to multiply red times blue.

