7. Quotient groups III

We know that the kernel of a group homomorphism is a normal subgroup. In fact the opposite is true, every normal subgroup is the kernel of a homomorphism:

Theorem 7.1. If H is a normal subgroup of a group G then the map

$$
\gamma: G \longrightarrow G / H \quad \text { given by } \quad \gamma(x)=x H
$$

is a homomorphism with kernel H.
Proof. Suppose that x and $y \in G$. Then

$$
\begin{aligned}
\gamma(x y) & =x y H \\
& =x H y H \\
& =\gamma(x) \gamma(y) .
\end{aligned}
$$

Therefore γ is a homomorphism.
$e H=H$ plays the role of the identity. The kernel is the inverse image of the identity.

$$
\gamma(x)=x H=H
$$

if and only if $x \in H$. Therefore the kernel of γ is H.
If we put all we know together we get:
Theorem 7.2 (First isomorphism theorem). Let $\phi: G \longrightarrow G^{\prime}$ be a group homomorphism with kernel K. Then $\phi[G]$ is a group and

$$
\mu: G / H \longrightarrow \phi[G] \quad \text { given by } \quad \mu(g H)=\phi(g),
$$

is an isomorphism.
If $\gamma: G \longrightarrow G / H$ is the map $\gamma(g)=g H$ then $\phi(g)=\mu \gamma(g)$.
The following triangle summarises the last statement:

Example 7.3. Determine the quotient group

$$
\frac{\mathbb{Z}_{3} \times \mathbb{Z}_{7}}{\mathbb{Z}_{3} \times\{0\}}
$$

Note that the quotient of an abelian group is always abelian. So by the fundamental theorem of finitely generated abelian groups the quotient is a product of abelian groups.

Consider the projection map onto the second factor \mathbb{Z}_{7} :

$$
\pi: \mathbb{Z}_{3} \times \mathbb{Z}_{7} \longrightarrow \mathbb{Z}_{7} \quad \text { given by } \quad(a, b) \longrightarrow b
$$

This map is onto and the kernel is $\mathbb{Z}_{3} \times\{0\}$. So by the first isomorphism theorem the quotient group is isomorphic to the image which is \mathbb{Z}_{7}.

Theorem 7.4. Let H be a subgroup of a group G.
The following are equivalent:
(1) $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$.
(2) $g H^{-1}=H$ for all $g \in G$.
(3) $g H=H g$.

Proof. Suppose that (1) holds. Then

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} \subset H,
$$

for any $g \in G$.
To prove (2) we have to establish that the RHS is a subset of the LHS. Pick $h \in H$. Then

$$
g^{-1} h g \in H
$$

as we assuming (1), applied to the element $g^{-1} \in G$. Thus $g^{-1} h g=h_{1}$ for some $h_{1} \in H$. Multiplying on the left by g and on the right by g^{-1} we get

$$
h=g h_{1} g^{-1} \in g H g^{-1} .
$$

Thus the RHS is a subset of the LHS and (2) holds.
Now suppose that (2) holds. We have to show that $g H=H g$. We first show that the LHS is a subset of the RHS. Pick $x \in g H$. Then $x=g h$, for some $h \in H$. We have

$$
x g^{-1}=g h g^{-1} \in g H g^{-1}=H,
$$

so that $x g^{-1}=h_{1} \in H$. But then $x=h_{1} g \in H g$. Thus the LHS is a subset of the RHS. By symmetry the RHS is a subset of the LHS. Thus (3) holds.

Finally suppose that (3) holds. Pick $g \in G$ and $h \in H$ and let $x=g h g^{-1}$. Then

$$
g h \in g H=H g
$$

so that $g h=h_{1} g \in H g$, for some $h_{1} \in H$. But then

$$
x=g h g^{-1}=h_{1} g g^{-1}=h_{1} \in H .
$$

Thus (1) holds.
Corollary 7.5. If G is abelian then every subgroup is normal.

Proof. Suppose that H is a subgroup of G. If $h \in H$ and $g \in G$ then

$$
g h g^{-1}=g g^{-1} h=h \in H
$$

Thus (1) of (7.4) holds. Therefore (3) holds and so H is normal.
Definition-Lemma 7.6. An automorphism of G is an isomorphism $\phi: G \longrightarrow G$.

Fix $g \in G$. Then the map

$$
i_{g}: G \longrightarrow G \quad \text { given by } \quad a \longrightarrow g a g^{-1}
$$

is an automorphism of G, called an inner automorphism.
Proof. We have to check that i_{g} is a group homomorphism and that i_{g} is a one to one correspondence.

Suppose that a and $b \in G$. We have

$$
\begin{aligned}
i_{g}(a b) & =g(a b) g^{-1} \\
& =g a\left(g^{-1} g\right) b g^{-1} \\
& =\left(g a g^{-1}\right)\left(g b g^{-1}\right) \\
& =i_{g}(a) i_{g}(b) .
\end{aligned}
$$

Thus i_{g} is a homomorphism.
There are two ways to check that i_{g} is a one to one correspondence.
To check that i_{g} is one to one, we just have to check that the kernel is trivial. Suppose that $a \in \operatorname{Ker} i_{g}$. Then

$$
g a g^{-1}=i_{g}(a)=e
$$

Multiplying on the left by g^{-1} and on the right by g we get

$$
a=g^{-1} e g=e .
$$

Thus the kernel is trivial and i_{g} is one to one.
Now we check that i_{g} is onto. Suppose that $b \in G$. Let $a=g^{-1} b g \in$ G. Then

$$
\begin{aligned}
i_{g}(a) & =g a g^{-1} \\
& =g\left(g^{-1} b g\right) g^{-1} \\
& =b .
\end{aligned}
$$

Thus i_{g} is onto. It follows that i_{g} is an automorphism.
Here is another way to show that i_{g} is an automorphism. Let's try to write down the inverse map. We guess that the inverse of i_{g} is $i_{g^{-1}}$.

We check

$$
\begin{aligned}
i_{g^{-1}}\left(i_{g}(a)\right) & =i_{g^{-1}}\left(g a g^{-1}\right) \\
& =g^{-1}\left(g a g^{-1}\right) g \\
& =\left(g^{-1} g\right) a\left(g^{-1} g\right) \\
& =a .
\end{aligned}
$$

Thus the composition one way is the identity. If we replace g by g^{-1} we see that the composition the other way is the identity. It follows that i_{g} is an automorphism.

