We introduce the main object of study for 103B.

Definition 9.1. A **ring** is a set R, together with two binary operations addition and multiplication, denoted $+$ and \cdot respectively, which satisfy the following axioms. Firstly R is an abelian group under addition, with zero as the identity.

1. **(Associativity)** For all a, b and c in R,
 \[(a + b) + c = a + (b + c).\]

2. **(Zero)** There is an element $0 \in R$ such that for all a in R,
 \[a + 0 = 0 + a.\]

3. **(Additive Inverse)** For all a in R, there exists $b \in R$ such that
 \[a + b = b + a = 0.\]
 b will be denoted $-a$.

4. **(Commutativity)** For all a and b in R,
 \[a + b = b + a.\]

Secondly multiplication is also associative.

5. **(Associativity)** For all a, b and c in R,
 \[(a \cdot b) \cdot c = a \cdot (b \cdot c).\]

Finally we require that addition and multiplication are compatible in an obvious sense.

6. **(Distributivity)** For all a, b and c in R, we have
 \[a \cdot (b + c) = a \cdot b + a \cdot c,\]
 \[(b + c) \cdot a = b \cdot a + c \cdot a.\]

Example 9.2. The complex numbers \mathbb{C} are a ring.

Definition 9.3. Let R be a ring and let S be a subset. We say that S is a **subring** of R, if S becomes a ring, with the induced addition and multiplication.

Lemma 9.4. Let R be a ring and let S be a non-empty subset.

Then S is a subring if and only if S is closed under addition, additive inverses and multiplication.

Proof. Similar proof as for groups.
Example 9.5. The following tower of subsets
\[\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \]
is in fact a tower of subrings. Thus the integers, rational numbers, reals and complex numbers are all rings.

Example 9.6. Let \(\mathbb{Z}_n \) denote the integers modulo \(n \). We already know that this forms a group under addition. It is also the case that multiplication is well-defined so that \(\mathbb{Z}_n \) is a ring.

It is interesting to see what happens in a specific example. Suppose that \(n = 6 \). In this case \(0 = [0] \). However note that one curious feature is that
\[[2][3] = [2 \cdot 3] = [6] = [0], \]
so that the product of two non-zero elements of \(R \) might in fact be zero.

Definition-Lemma 9.7. Let \(R \) be a ring and let \(n \) be a positive integer. \(M_n(R) \) denotes the set of all \(n \times n \) matrices with entries in \(R \). Given two such matrices \(A = (a_{ij}) \) and \(B = (b_{ij}) \), we define \(A + B \) as \((a_{ij} + b_{ij})\). The product of \(A \) and \(B \) is also defined in the usual way. That is, the \(ij \) entry of \(AB \) is the dot product of the \(i \)th row of \(A \) and the \(j \)th column of \(B \).

With this rule of addition and multiplication \(M_n(R) \) becomes a ring, with zero given as the zero matrix (every entry equal to zero).

Proof. This is standard but somewhat tedious to check. \(\square \)

Note that if \(n = 1 \) then \(M_1(R) \) is simply a copy of \(R \).
To fix ideas, let us consider an easy example of a matrix ring.

Example 9.8. Let \(R = \mathbb{Z}_6 \) be the ring of integers modulo 6 and take \(n = 2 \). Take
\[A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 5 \\ 1 & 2 \end{pmatrix} \]
Then
\[AB = \begin{pmatrix} 3 + 1 & 15 + 2 \\ 2 + 4 & 10 + 8 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ 6 & 0 \end{pmatrix}. \]

Definition-Lemma 9.9. Consider the set \(F \) of functions from \(\mathbb{R} \) to \(\mathbb{R} \). We already know how to add to such functions: given \(f \) and \(g \in F \), define \(f + g \) by the rule,
\[(f + g)(x) = f(x) + g(x) \in \mathbb{R}, \]
where \(x \in \mathbb{R} \) and addition is in \(\mathbb{R} \). In words, we add the functions pointwise.
Under addition F becomes a group. There is an obvious way to multiply two functions: define $f \cdot g$ by the rule,

$$(f \cdot g)(x) = f(x) \cdot g(x) \in \mathbb{R},$$

where $x \in \mathbb{R}$ and multiplication is in \mathbb{R}. In words we multiply two functions pointwise.

With this rule of addition and multiplication F becomes a ring.

Proof. Again, all of this is easy to check. We check associativity of addition and leave the rest to the reader. Suppose that f, g and h are three functions from X to R. We want to prove

$$(f + g) + h = f + (g + h).$$

Since both sides are functions from \mathbb{R} to \mathbb{R}, it suffices to prove that they have the same effect on any real number $x \in \mathbb{R}$.

$$
((f + g) + h)(x) = (f + g)(x) + h(x)
= (f(x) + g(x)) + h(x)
= f(x) + (g(x) + h(x))
= f(x) + (g + h)(x)
= (f + (g + h))(x).
$$

\square

Example 9.10. $n\mathbb{Z}$ is a subring of \mathbb{Z}, since the sum and product of two multiples of n is a multiple of n.

Example 9.11. If R and S are rings then the Cartesian product is naturally a ring. We have already seen that $R \times S$ is naturally an abelian group under addition. If we define multiplication by the rule:

$$(r_1, s_1) \cdot (r_2, s_2) = (r_1r_2, s_1s_2)$$

then it is not hard to see that $R \times S$ is a ring.