
9. Rings

We introduce the main object of study for 103B.

Definition 9.1. A ring is a set R, together with two binary operations
addition and multiplication, denoted + and · respectively, which satisfy
the following axioms. Firstly R is an abelian group under addition,
with zero as the identity.

(1) (Associativity) For all a, b and c in R,

(a + b) + c = a + (b + c).

(2) (Zero) There is an element 0 ∈ R such that for all a in R,

a + 0 = 0 + a.

(3) (Additive Inverse) For all a in R, there exists b ∈ R such that

a + b = b + a = 0.

b will be denoted −a.
(4) (Commutavity) For all a and b in R,

a + b = b + a.

Secondly multiplication is also associative.

(5) (Associativity) For all a, b and c in R,

(a · b) · c = a · (b · c).

Finally we require that addition and multiplication are compatible in
an obvious sense.

(6) (Distributivity) For all a, b and c in R, we have

a · (b + c) = a · b + a · c,
(b + c) · a = b · a + c · a.

Example 9.2. The complex numbers C are a ring.

Definition 9.3. Let R be a ring and let S be a subset. We say that S
is a subring of R, if S becomes a ring, with the induced addition and
multiplication.

Lemma 9.4. Let R be a ring and let S be a non-empty subset.
Then S is a subring if and only if S is closed under addition, additive

inverses and multiplication.

Proof. Similar proof as for groups. �
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Example 9.5. The following tower of subsets

Z ⊂ Q ⊂ R ⊂ C

is in fact a tower of subrings. Thus the integers, rational numbers,
reals and complex numbers are all rings.

Example 9.6. Let Zn denote the integers modulo n. We already know
that this forms a group under addition. It is also the case that multi-
plication is well-defined so that Zn is a ring.

It is interesting to see what happens in a specific example. Suppose
that n = 6. In this case 0 = [0]. However note that one curious feature
is that

[2][3] = [2 · 3] = [6] = [0],

so that the product of two non-zero elements of R might in fact be zero.

Definition-Lemma 9.7. Let R be a ring and let n be a positive integer.
Mn(R) denotes the set of all n × n matrices with entries in R. Given
two such matrices A = (aij) and B = (bij), we define A+B as (aij+bij).
The product of A and B is also defined in the usual way. That is, the ij
entry of AB is the dot product of the ith row of A and the jth column
of B.

With this rule of addition and multiplication Mn(R) becomes a ring,
with zero given as the zero matrix (every entry equal to zero).

Proof. This is standard but somewhat tedious to check. �

Note that if n = 1 then M1(R) is simply a copy of R.
To fix ideas, let us consider an easy example of a matrix ring.

Example 9.8. Let R = Z6 be the ring of integers modulo 6 and take
n = 2. Take

A =

(
3 1
2 4

)
B =

(
1 5
1 2

)
Then

AB =

(
3 + 1 15 + 2
2 + 4 10 + 8

)
=

(
4 5
0 0

)
.

Definition-Lemma 9.9. Consider the set F of functions from R to
R. We already know how to add to such functions: given f and g ∈ F ,
define f + g by the rule,

(f + g)(x) = f(x) + g(x) ∈ R,

where x ∈ R and addition is in R. In words, we add the functions
pointwise.
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Under addition F becomes a group. There is an obvious way to
multiply two functions: define f · g by the rule,

(f · g)(x) = f(x) · g(x) ∈ R,
where x ∈ R and multiplication is in R. In words we multiply two
functions pointwise.

With this rule of addition and multiplication F becomes a ring.

Proof. Again, all of this is easy to check. We check associativity of
addition and leave the rest to the reader. Suppose that f , g and h are
three functions from X to R. We want to prove

(f + g) + h = f + (g + h).

Since both sides are functions from R to R, it suffices to prove that
they have the same effect on any real number x ∈ R.

((f + g) + h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= (f + (g + h))(x). �

Example 9.10. nZ is a subring of Z, since the sum and product of
two multiples of n is a multiple of n.

Example 9.11. If R and S are rings then the Cartesian product is
naturally a ring. We have already seen that R × S is naturally an
abelian group under addition. If we define multiplication by the rule:

(r1, s1) · (r2, s2) = (r1r2, s1s2)

then it is not hard to see that R× S is a ring.
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