9. Rings

We introduce the main object of study for 103B.
Definition 9.1. A ring is a set R, together with two binary operations addition and multiplication, denoted + and \cdot respectively, which satisfy the following axioms. Firstly R is an abelian group under addition, with zero as the identity.
(1) (Associativity) For all a, b and c in R,

$$
(a+b)+c=a+(b+c)
$$

(2) (Zero) There is an element $0 \in R$ such that for all a in R,

$$
a+0=0+a .
$$

(3) (Additive Inverse) For all a in R, there exists $b \in R$ such that

$$
a+b=b+a=0
$$

b will be denoted $-a$.
(4) (Commutavity) For all a and b in R,

$$
a+b=b+a
$$

Secondly multiplication is also associative.
(5) (Associativity) For all a, b and c in R,

$$
(a \cdot b) \cdot c=a \cdot(b \cdot c)
$$

Finally we require that addition and multiplication are compatible in an obvious sense.
(6) (Distributivity) For all a, b and c in R, we have

$$
\begin{aligned}
& a \cdot(b+c)=a \cdot b+a \cdot c \\
& (b+c) \cdot a=b \cdot a+c \cdot a
\end{aligned}
$$

Example 9.2. The complex numbers \mathbb{C} are a ring.
Definition 9.3. Let R be a ring and let S be a subset. We say that S is a subring of R, if S becomes a ring, with the induced addition and multiplication.

Lemma 9.4. Let R be a ring and let S be a non-empty subset.
Then S is a subring if and only if S is closed under addition, additive inverses and multiplication.

Proof. Similar proof as for groups.

Example 9.5. The following tower of subsets

$$
\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}
$$

is in fact a tower of subrings. Thus the integers, rational numbers, reals and complex numbers are all rings.

Example 9.6. Let \mathbb{Z}_{n} denote the integers modulo n. We already know that this forms a group under addition. It is also the case that multiplication is well-defined so that \mathbb{Z}_{n} is a ring.

It is interesting to see what happens in a specific example. Suppose that $n=6$. In this case $0=[0]$. However note that one curious feature is that

$$
[2][3]=[2 \cdot 3]=[6]=[0],
$$

so that the product of two non-zero elements of R might in fact be zero.
Definition-Lemma 9.7. Let R be a ring and let n be a positive integer. $M_{n}(R)$ denotes the set of all $n \times n$ matrices with entries in R. Given two such matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, we define $A+B$ as $\left(a_{i j}+b_{i j}\right)$. The product of A and B is also defined in the usual way. That is, the $i j$ entry of $A B$ is the dot product of the i th row of A and the j th column of B.

With this rule of addition and multiplication $M_{n}(R)$ becomes a ring, with zero given as the zero matrix (every entry equal to zero).

Proof. This is standard but somewhat tedious to check.
Note that if $n=1$ then $M_{1}(R)$ is simply a copy of R.
To fix ideas, let us consider an easy example of a matrix ring.
Example 9.8. Let $R=\mathbb{Z}_{6}$ be the ring of integers modulo 6 and take $n=2$. Take

$$
A=\left(\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 5 \\
1 & 2
\end{array}\right)
$$

Then

$$
A B=\left(\begin{array}{ll}
3+1 & 15+2 \\
2+4 & 10+8
\end{array}\right)=\left(\begin{array}{ll}
4 & 5 \\
0 & 0
\end{array}\right)
$$

Definition-Lemma 9.9. Consider the set F of functions from \mathbb{R} to \mathbb{R}. We already know how to add to such functions: given f and $g \in F$, define $f+g$ by the rule,

$$
(f+g)(x)=f(x)+g(x) \in \mathbb{R}
$$

where $x \in \mathbb{R}$ and addition is in \mathbb{R}. In words, we add the functions pointwise.

Under addition F becomes a group. There is an obvious way to multiply two functions: define $f \cdot g$ by the rule,

$$
(f \cdot g)(x)=f(x) \cdot g(x) \in \mathbb{R}
$$

where $x \in \mathbb{R}$ and multiplication is in \mathbb{R}. In words we multiply two functions pointwise.

With this rule of addition and multiplication F becomes a ring.
Proof. Again, all of this is easy to check. We check associativity of addition and leave the rest to the reader. Suppose that f, g and h are three functions from X to R. We want to prove

$$
(f+g)+h=f+(g+h) .
$$

Since both sides are functions from \mathbb{R} to \mathbb{R}, it suffices to prove that they have the same effect on any real number $x \in \mathbb{R}$.

$$
\begin{aligned}
((f+g)+h)(x) & =(f+g)(x)+h(x) \\
& =(f(x)+g(x))+h(x) \\
& =f(x)+(g(x)+h(x)) \\
& =f(x)+(g+h)(x) \\
& =(f+(g+h))(x) .
\end{aligned}
$$

Example 9.10. $n \mathbb{Z}$ is a subring of \mathbb{Z}, since the sum and product of two multiples of n is a multiple of n.

Example 9.11. If R and S are rings then the Cartesian product is naturally a ring. We have already seen that $R \times S$ is naturally an abelian group under addition. If we define multiplication by the rule:

$$
\left(r_{1}, s_{1}\right) \cdot\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, s_{1} s_{2}\right)
$$

then it is not hard to see that $R \times S$ is a ring.

