FIRST MIDTERM MATH 103B, UCSD, SPRING 16

You have 50 minutes.

There are 6 problems, and the total number of points is 85. Show all your work. *Please make* your work as clear and easy to follow as possible.

Name:_____

Signature:_____

Problem	Points	Score
1	15	
2	15	
3	10	
4	15	
5	15	
6	15	
7	10	
8	10	
Total	85	

1. (15pts) (i) Give the definition of the index of a subgroup H of a group G. The number of left cosets of H in G.

(ii) Give the definition of the direct product $H \times G$ of two groups H and G. The Cartesian product of H and G with multiplication defined by the rule

$$(h_1, g_1)(h_2, g_2) = (h_1h_2, g_1g_2),$$

for all $h_i \in H$ and $g_i \in G, i = 1, 2.$

(iii) Give the definition of a group homomorphism $\phi: G \longrightarrow G'$. A map between two groups such that

$$\phi(ab) = \phi(a)\phi(b),$$

for all a and $b \in G$.

2. (15pts) (i) List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_5$. (0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4).

(ii) Find the order of these elements.
Order 1: (0,0)
Order 2: (1,0)
Order 5: (0,1), (0,2), (0,3), (0,4)
Order 10: (1,1), (1,2), (1,3), (1,4)

(iii) Is this group cyclic?Yes. For example (1, 1) is a generator.

3. (10pts) What is the order of $(4, 3, 5, 12) \in \mathbb{Z}_{12} \times \mathbb{Z}_{18} \times \mathbb{Z}_{40} \times \mathbb{Z}_{120}$? The order of an element of the product of groups is the lowest common multiple of the orders of the entries.

4 has order 3 in \mathbb{Z}_{12} ; 3 has order 6 in \mathbb{Z}_{18} ; 5 has order 8 in \mathbb{Z}_{40} ; 12 has order 10 in \mathbb{Z}_{120} . The lcm of 3, 6, 8 and 10 is $2^3 \cdot 3 \cdot 5 = 120$. The order is 120.

4. (15pts) (i) State the fundamental theorem of finitely generated abelian groups.

Every finitely generated abelian group is isomorphic to a product

$$\mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z},$$

 $\mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z},$ where p_1, p_2, \ldots, p_n are prime numbers and a_1, a_2, \ldots, a_n are positive integers. The direct product is unique, up to re-ordering the factors, so that the number of copies of \mathbb{Z} and the prime powers are unique.

(ii) Find all abelian groups of order 56, up to isomorphism. We first write down the prime factorisation of $56 = 8 \cdot 7$. So the possibilities are:

- (1) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_7$.
- $(2) \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_7.$
- (3) $\mathbb{Z}_8 \times \mathbb{Z}_7$.

5. (15pts) Determine whether the given map ϕ is a group homomorphism.

(i) $\phi \colon \mathbb{R} \longrightarrow \mathbb{Z}$ under addition, given by $\phi(x) = the \text{ greatest integer} \leq x$.

 ϕ is not a homomorphism.

 $\phi(0.5+0.5) = \phi(1) = 1$ but $\phi(0.5) + \phi(0.5) = 0 + 0 = 0 \neq 1$, so that

$$\phi(0.5+0.5) \neq \phi(0.5) + \phi(0.5).$$

(ii) $\phi: \operatorname{GL}(n, \mathbb{R}) \longrightarrow \mathbb{R}^*$ given by $\phi(A) = \det A$, where $\operatorname{GL}(n, \mathbb{R})$ is the group of all $n \times n$ invertible matrices with real entries. Suppose that A and $B \in \operatorname{GL}(n, \mathbb{R})$. We have

$$\phi(AB) = \det(AB)$$

= det A det B
= $\phi(A)\phi(B)$.

Thus ϕ is a group homomorphism.

6. (15pts) Let $\phi: G \longrightarrow G'$ be a group homomorphism. Suppose that G is abelian and ϕ is onto. Show that G' is abelian.

Suppose that a' and b' are elements of G'. As ϕ is onto we may find elements a and b of G such that $\phi(a) = a'$ and $\phi(b) = b'$. We have

$$a'b' = \phi(a)\phi(b)$$
$$= \phi(ab)$$
$$= \phi(ba)$$
$$= \phi(b)\phi(a)$$
$$= b'a'.$$

Therefore G' is abelian.

Bonus Challenge Problems

7. (10pts) Sketch a proof that every finite group of isometries of the plane is isomorphic to either \mathbb{Z}_n or D_n for some n. See the lecture notes.

8. (10pts) Let G be a finite abelian group of order n. Show that there is a subgroup H of order m if and only if m divides n. See the lecture notes.