SECOND MIDTERM

MATH 103B, UCSD, SPRING 16

You have 50 minutes.

There are 6 problems, and the total number of points is 85 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature:

Problem	Points	Score
1	15	
2	10	
3	20	
4	10	
5	15	
6	15	
7	10	
8	10	
Total	85	

1. (15pts) (i) Give the definition of a commutative ring. A ring is a triple $(R,+,$.$) where (R,+)$ is an abelian group, multiplication is a binary operation which is associative and the distributive laws holds, that is

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(b+c) \cdot a=b \cdot a+c \cdot a
$$

where a, b and c are any elements of the ring.
(ii) Give the definition of a zero-divisor. Elements a and b of a ring are zero-divisors if they are non-zero and $a \cdot b=0$.
(iii) Give the definition of an integral domain. A commutative ring, with unity, $1 \neq 0$ with no integral divisors.
2. (10pts) Find the orders of the following quotient groups:
(i)

$$
\frac{\mathbb{Z}_{4} \times \mathbb{Z}_{12}}{\langle 2\rangle \times\langle 2\rangle}
$$

The order of $\mathbb{Z}_{4} \times \mathbb{Z}_{12}$ is $4 \cdot 12=48$. The order of $\langle 2\rangle \times\langle 2\rangle$ is $2 \cdot 6=12$. The order of the quotient is the number of left cosets which by Lagrange is $48 / 12=4$.
(ii)

$$
\frac{\mathbb{Z}_{4} \times \mathbb{Z}_{12}}{\langle(2,2)\rangle} .
$$

The order of $\mathbb{Z}_{4} \times \mathbb{Z}_{12}$ is $4 \cdot 12=48$. The order of $\langle(2,2)\rangle$ is the order $(2,2)$ which is 6 . The order of the quotient is the number of left cosets which by Lagrange is $48 / 6=8$.
3. (20pts) Determine whether the given operations are defined on the set and whether they give a ring. If we don't get a ring, explain why. If we do get a ring, state whether the ring is commutative, whether it has unity and whether it is a field.
(i) $n \mathbb{Z}$ with the usual addition and multiplication.

Yes, this is a subring of the integers, since the sum of two multiples of n is a multiple of n and the product of two multiples of n is a multiple of n. It is commutative, it won't contain 1 unless $n= \pm 1$ and it is never a field, since even if $n= \pm 1,2 \in n \mathbb{Z}=\mathbb{Z}$ does not have an inverse.
(ii) \mathbb{Z}^{+}, all non-negative integers, with the usual addition and multiplication.
No this is not a ring. It is not a group under addition. The problem is that the positive integers won't have additive inverses. For example, 2 does not have an additive inverse.
4. (10pts) Let R be a ring of characteristic 3. Compute and simplify $(a+b)^{6}$ for $a, b \in R$.
By the binomial theorem we have

$$
\begin{aligned}
(a+b)^{6} & =a^{6}+6 \cdot a^{5} b+15 \cdot a^{4} b^{2}+20 \cdot a^{3} b^{3}+15 \cdot a^{2} b^{4}+6 \cdot a b^{5}+b^{6} \\
& =a^{6}+20 \cdot a^{3} b^{3}+b^{6} \\
& =a^{6}+2 \cdot a^{3} b^{3}+b^{6},
\end{aligned}
$$

since the characteristic is 3 .
5. (15pts)
(i) What is the remainder when you divide 9^{42} by 13?

As 13 is prime, Fermat implies that

$$
9^{12}=1 \quad \bmod 13
$$

$42=36+6=3 \cdot 12+6$. So

$$
\begin{aligned}
9^{42} & =\left(9^{12}\right)^{3} \cdot 9^{6} \\
& =9^{6} \\
& =3^{12} \\
& =1 \quad \bmod 13
\end{aligned}
$$

(ii) What is the remainder when you divide 8^{63} by 21? $\varphi(21)=\varphi(3) \varphi(7)=(3-1)(7-1)=12$.
As 8 is coprime to 21 , Euler implies that

$$
8^{12}=1 \bmod 21
$$

Therefore

$$
\begin{aligned}
8^{63} & =8^{60} \cdot 8^{3} \\
& =\left(8^{12}\right)^{5} \cdot 8^{3} \\
& =8^{3} \\
& =2^{9} \\
& =2^{4} \cdot 2^{5} \\
& =16 \cdot 32 \\
& =(-5) \cdot 11 \\
& =-55 \\
& =8 .
\end{aligned}
$$

6. (15pts) Show that the rings $2 \mathbb{Z}$ and $5 \mathbb{Z}$ are not isomorphic.

Suppose not. Let

$$
\phi: 2 \mathbb{Z} \longrightarrow 5 \mathbb{Z},
$$

be a ring isomorphism. Let $a=\phi(2)$. As ϕ is an additive group homomorphism, we have

$$
\begin{aligned}
\phi(4) & =\phi(2+2) \\
& =\phi(2)+\phi(2) \\
& =a+a \\
& =2 a .
\end{aligned}
$$

As ϕ is a ring homomorphism, we also have

$$
\begin{aligned}
\phi(4) & =\phi(2 \cdot 2) \\
& =\phi(2) \cdot \phi(2) \\
& =a \cdot a \\
& =a^{2} .
\end{aligned}
$$

Thus $a^{2}=2 a$. As $5 \mathbb{Z} \subset \mathbb{C}$ we can intepret a as a complex solution of the polynomial equation

$$
x^{2}=2 x .
$$

We know the complex solutions to this equation, $x=0$ and $x=2$. As $2 \notin 5 \mathbb{Z}$ we must have $a=0$. But then

$$
\phi(0)=0=\phi(2)
$$

so that ϕ is not one to one. But then ϕ is not an isomorphism.

Bonus Challenge Problems

7. (10pts) Let H be a subgroup of a group G. Prove the following are equivalent
(1) $g h g^{-1} \in H$ for all $g \in G$ and $h \in H$.
(2) $g H^{-1}=H$ for all $g \in G$.
(3) $g H=H g$ for all $g \in G$.

See the lecture notes.
8. (10pts) Show if n is a natural number with prime factorisation

$$
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{m}^{k_{m}}
$$

then

$$
\varphi(n)=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right)\left(p_{2}^{k_{2}}-p_{2}^{k_{2}-2}\right) \ldots\left(p_{m}^{k_{m}}-p_{m}^{k_{m}-1}\right) .
$$

See the lecture notes.

