MODEL ANSWERS TO THE FIRST HOMEWORK

§10 5.

 $\{0, 18\}, 1+\{0, 18\} = \{1, 19\}, 2+\{0, 18\} = \{2, 20\}, \dots, 17+\{0, 18\} = \{17, 35\}.$

6. The group D_4 has order eight and the subgroup $H = \{\rho_0, \mu_2\}$ has order two and so the number of cosets is 4. One coset is H. Pick an element not in H, for example, ρ_1 ,

$$\rho_1 H = \{ \rho_1, \delta_2 \}.$$

Pick an element not in either of these two left cosets, for example, ρ_2 ,

$$\rho_2 H = \{ \rho_2, \mu_1 \}.$$

This leaves two elements, which must form their own coset,

$$\rho_3 H = \{\rho_3, \delta_1\}.$$

15. We first multiply out σ to represent it as a product of disjoint cycles,

$$(1, 2, 4, 5)(2, 3) = (2, 3, 4, 5, 1) = (1, 2, 3, 4, 5).$$

So σ is a 5-cycle and the order of σ is five. The order of S_5 is $5! = 5 \cdot 4! = 120$. So the index of σ is 4! = 24.

F: (d), (f), (i) (The Klein 4-group has no element of order 4). 27. Define

 $\phi \colon H \longrightarrow Hg$ by the rule $h \longrightarrow hg$.

Suppose that $y \in Hg$. Then y = hg for some h and $\phi(h) = hg = y$. Thus ϕ is onto. Suppose that $\phi(h_1) = \phi(h_2)$. Then $h_1g = h_2g$. Multiplying both sides by g^{-1} on the right, we get $h_1 = h_2$. But then ϕ is one to one.

30. False. Take $G = S_3$ and $H = \{e, (1, 2)\}$. Let a = (1, 3, 2) and b = (2, 3). Then $a \in aH$ and

$$a = (1, 3, 2) = (2, 3)(1, 2) \in bH,$$

so that aH = bH. But

$$Hb = \{(2,3), (1,2,3)\},\$$

so that $a \notin Hb$. As $a \in Ha$, $Ha \neq Hb$. §11 2. The elements of $\mathbb{Z}_3 \times \mathbb{Z}_4$ are (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), (0,2), (1,2), (2,2), (0,3), (1,3), (2,3). The order of an element is the lcm of the orders of the components:

1: (0,0)

- 2:(0,2)
- 3: (1,0), (2,0)
- 4: (0,1), (0,3)
- 6: (1,2), (2,2)
- 12: (1,1), (2,1), (1,3), (2,3).

Yes, this group is cyclic. For example, (1, 1) is a generator.

7. The order of 3 in \mathbb{Z}_4 is 4; the order of 6 in \mathbb{Z}_{12} is 2; the order of 12 in \mathbb{Z}_{20} is 5; the order of 16 in \mathbb{Z}_{24} is 3.

So the order of (3, 6, 12, 16) in $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$ is 60, the lcm of 4, 2, 5 and 3.

10. The order of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is 8. By Lagrange the order of a subgroup is 1, 2, 4, or 8. If the order is 1 the subgroup is the trivial subgroup and if the order is 8 we have all of G. So we list the subgroups of order 2 and 4. Every element of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, other than the identity, has order two. Thus the subgroups of order two are:

$$\{ (0,0,0), (1,0,0) \} \ \{ (0,0,0), (0,1,0) \} \ \{ (0,0,0), (0,0,1) \} \ \{ (0,0,0), (1,1,1) \} \ \{ (0,0,0), (0,1,1) \} \ \{ (0,0,0), (1,0,1) \} \ \{ (0,0,0), (1,1,0) \}.$$

If you take any two elements of order two and add them together this gives three elements of order two and together with the identity this is a subgroup of order 4. Thus the subgroups of order four are:

 $\left\{ \begin{array}{ll} (0,0,0), (0,1,0), (0,0,1), (0,1,1) \right\} & \left\{ \begin{array}{l} (0,0,0), (1,0,0), (0,0,1), (1,0,1) \right\} \\ \left\{ \begin{array}{l} (0,0,0), (1,0,0), (0,1,0), (1,1,0) \right\} & \left\{ \begin{array}{l} (0,0,0), (0,1,1), (1,0,0), (1,1,1) \right\} \\ \left\{ \begin{array}{l} (0,0,0), (1,0,1), (0,1,0), (1,1,1) \right\} & \left\{ \begin{array}{l} (0,0,0), (0,1,1), (1,0,0), (1,1,1) \right\} \\ \left\{ \begin{array}{l} (0,0,0), (0,1,1), (1,0,1), (1,1,0) \right\}. \end{array} \right\}$

12. The Klein 4 group is the unique group of order 4 not isomorphic to a cyclic group. $\mathbb{Z}_2 \times \mathbb{Z}_2$ has order 4 and it is not cyclic, so it is isomorphic to the Klein 4 group.

Every element of the Klein 4 group has order one or two. The elements of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ of order two are $\mathbb{Z}_2 \times \mathbb{Z}_2 \times 2\mathbb{Z}_4$ and this group is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Thus the subgroups isomorphic to the Klein group are:

$$\left\{ \begin{array}{ll} (0,0,0), (0,1,0), (0,0,2), (0,1,2) \right\} & \left\{ \begin{array}{l} (0,0,0), (1,0,0), (0,0,2), (1,0,2) \right\} \\ \left\{ \begin{array}{l} (0,0,0), (1,0,0), (0,1,0), (1,1,0) \right\} & \left\{ \begin{array}{l} (0,0,0), (0,1,2), (1,0,0), (1,1,2) \right\} \\ \left\{ \begin{array}{l} (0,0,0), (1,0,2), (0,1,0), (1,1,2) \right\} & \left\{ \begin{array}{l} (0,0,0), (0,1,2), (1,0,0), (1,1,2) \right\} \\ \left\{ \begin{array}{l} (0,0,0), (0,1,2), (1,0,2), (1,1,0) \right\}. \end{array} \right\}$$

16. Yes. Both groups are abelian of order $24 = 2^3 \cdot 3$. By the fundamental theorem of finitely generated abelian groups, there are three abelian groups of order 24 up to isomorphism:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$
, $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3$ and $\mathbb{Z}_8 \times \mathbb{Z}_3$.

Consider the elements of order a non-trivial power of 2. The first group has elements only of order 2, the second group has elements of order 2 and 4 and the third group has elements of order 2, 4 and 8.

The group $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ has elements of order four but not eight. Thus $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ is isomorphic to the second group in the list.

The group $\mathbb{Z}_4 \times \mathbb{Z}_6$ also has elements of order four but not eight. Thus $\mathbb{Z}_4 \times \mathbb{Z}_6$ is also isomorphic to the second group in the list.

But then $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ and $\mathbb{Z}_4 \times \mathbb{Z}_6$ are isomorphic.

24. We first write down the prime factorisation of $720 = 72 \cdot 10 = 2^4 \cdot 3^2 \cdot 5$.

Using the fundamental theorem of finitely generated abelian groups the abelian groups of order 720, up to isomorphism are:

$$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \\ \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \\ \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{16} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{16} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}.$$

47. *H* contains the identity by assumption. Suppose that $h \in H$. Then $h^2 = e$, the identity. Hence $h^{-1} = h \in H$ and so *H* is closed under taking inverses. Now suppose that $h_i \in H$, i = 1 and 2. Then

$$(h_1h_2)^2 = h_1h_2h_1h_2$$

= $h_1^2h_2^2$
= e ,

where we got from the first line to the second line as G is abelian. Therefore either h_1h_2 is the identity or it is has order two. In particular $h_1h_2 \in H$ and H is closed under multiplication. Therefore H is a subgroup of G. 52. Suppose that G is a cyclic group. Then every subgroup H is cyclic. Every element of $H = \mathbb{Z}_p \times \mathbb{Z}_p$ has order either 1 or p and the order of H is p^2 and so H is not cyclic. Therefore H is not isomorphic to a subgroup of a cyclic group G.

Now suppose that G does not contain a subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. The fundamental theorem of finitely generated abelian groups implies that G is isomorphic to

$$\mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}},$$

where p_1, p_2, \ldots, p_n are primes and a_1, a_2, \ldots, a_n are positive invegers. Suppose that $p_i = p_j$. Then *G* contains a subgroup isomorphic to $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$. As \mathbb{Z}_a contains a subgroup isomorphic to \mathbb{Z}_p , $\mathbb{Z}_{p^a} \times \mathbb{Z}_{p^b}$ contains a subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, a contradiction.

Thus $p_i = p_j$ implies that i = j. But then G is a cyclic group. Challenge Problems

45. We may assume that $G = \mathbb{Z}_n$. If d divides n then let a = n/d. Then

 $\langle a \rangle$

is a subgroup of order d.

Now let H be a subgroup of G of order d. Then d divides n by Lagrange. On the other hand, the smallest element a of H is a generator of H. The order of a is n/a, so that d = n/a. But then a = n/d and so there is only one subgroup of order d.

46. Partition the elements of \mathbb{Z}_n by their order. By Lagrange the order must be a divisor d of n. Let P_d be the elements of order d. Then

$$n = |\mathbb{Z}_n| = \sum_{d|n} |P_d|.$$

Now every element of P_d generates a subgroup of order d. But there is only such subgroup H. H is isomorphic to \mathbb{Z}_d and $a \in \mathbb{Z}_d$ generates \mathbb{Z}_d if and only if a is coprime to d. Thus

$$|P_d| = \phi(d).$$

Putting all of this together, we have

$$n = \sum_{d|n} \phi(d).$$

47. Let *n* be the order of *G*. Partition the elements of *G* by their order. By Lagrange the order must be a divisor *d* of *n*. Let P_d be the elements of order *d*. Then

$$n = |G| = \sum_{d|n} |P_d|.$$

If $x^m = e$ always has at most m solutions then there is at most one subgroup of order m and so $|P_d| \leq \phi(d)$. Since we already saw that

$$n = \sum_{d|n} \phi(d).$$

we must have that $|P_d| = \phi(d)$ for all divisors d of n. In particular $|P_n| = \phi(n) \neq 0$ and so there are elements of order n. But then G is cyclic.