MODEL ANSWERS TO THE FIRST HOMEWORK

$\S 10$
5.
$\{0,18\}, 1+\{0,18\}=\{1,19\}, 2+\{0,18\}=\{2,20\}, \ldots, 17+\{0,18\}=\{17,35\}$.
6. The group D_{4} has order eight and the subgroup $H=\left\{\rho_{0}, \mu_{2}\right\}$ has order two and so the number of cosets is 4 . One coset is H. Pick an element not in H, for example, ρ_{1},

$$
\rho_{1} H=\left\{\rho_{1}, \delta_{2}\right\} .
$$

Pick an element not in either of these two left cosets, for example, ρ_{2},

$$
\rho_{2} H=\left\{\rho_{2}, \mu_{1}\right\} .
$$

This leaves two elements, which must form their own coset,

$$
\rho_{3} H=\left\{\rho_{3}, \delta_{1}\right\} .
$$

15. We first multiply out σ to represent it as a product of disjoint cycles,

$$
(1,2,4,5)(2,3)=(2,3,4,5,1)=(1,2,3,4,5) .
$$

So σ is a 5 -cycle and the order of σ is five. The order of S_{5} is $5!=$ $5 \cdot 4!=120$. So the index of σ is $4!=24$.
19. T: (a), (b), (c), (e), (g), (h), (j).

F: (d), (f), (i) (The Klein 4-group has no element of order 4).
27. Define

$$
\phi: H \longrightarrow H g \quad \text { by the rule } \quad h \longrightarrow h g .
$$

Suppose that $y \in H g$. Then $y=h g$ for some h and $\phi(h)=h g=$ y. Thus ϕ is onto. Suppose that $\phi\left(h_{1}\right)=\phi\left(h_{2}\right)$. Then $h_{1} g=h_{2} g$. Multiplying both sides by g^{-1} on the right, we get $h_{1}=h_{2}$. But then ϕ is one to one.
30. False. Take $G=S_{3}$ and $H=\{e,(1,2)\}$. Let $a=(1,3,2)$ and $b=(2,3)$. Then $a \in a H$ and

$$
a=(1,3,2)=(2,3)(1,2) \in b H
$$

so that $a H=b H$. But

$$
H b=\{(2,3),(1,2,3)\},
$$

so that $a \notin H b$. As $a \in H a, H a \neq H b$.
§11
2. The elements of $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ are $(0,0),(1,0),(2,0),(0,1),(1,1),(2,1)$, $(0,2),(1,2),(2,2),(0,3),(1,3),(2,3)$. The order of an element is the lcm of the orders of the components:
1: $(0,0)$
2: $(0,2)$
3: $(1,0),(2,0)$
4: $(0,1),(0,3)$
6: $(1,2),(2,2)$
12: $(1,1),(2,1),(1,3),(2,3)$.
Yes, this group is cyclic. For example, $(1,1)$ is a generator.
7. The order of 3 in \mathbb{Z}_{4} is 4 ; the order of 6 in \mathbb{Z}_{12} is 2 ; the order of 12 in \mathbb{Z}_{20} is 5 ; the order of 16 in \mathbb{Z}_{24} is 3 .
So the order of $(3,6,12,16)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{12} \times \mathbb{Z}_{20} \times \mathbb{Z}_{24}$ is 60 , the lcm of 4 , 2, 5 and 3 .
10. The order of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is 8 . By Lagrange the order of a subgroup is $1,2,4$, or 8 . If the order is 1 the subgroup is the trivial subgroup and if the order is 8 we have all of G. So we list the subgroups of order 2 and 4. Every element of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, other than the identity, has order two. Thus the subgroups of order two are:

$$
\begin{aligned}
& \{(0,0,0),(1,0,0)\} \quad\{(0,0,0),(0,1,0)\} \quad\{(0,0,0),(0,0,1)\} \quad\{(0,0,0),(1,1,1)\} \\
& \{(0,0,0),(0,1,1)\} \quad\{(0,0,0),(1,0,1)\} \quad\{(0,0,0),(1,1,0)\} .
\end{aligned}
$$

If you take any two elements of order two and add them together this gives three elements of order two and together with the identity this is a subgroup of order 4. Thus the subgroups of order four are:

$$
\begin{array}{ll}
\{(0,0,0),(0,1,0),(0,0,1),(0,1,1)\} & \{(0,0,0),(1,0,0),(0,0,1),(1,0,1)\} \\
\{(0,0,0),(1,0,0),(0,1,0),(1,1,0)\} & \{(0,0,0),(0,1,1),(1,0,0),(1,1,1)\} \\
\{(0,0,0),(1,0,1),(0,1,0),(1,1,1)\} & \{(0,0,0),(1,1,0),(0,0,1),(1,1,1)\} \\
\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\} . &
\end{array}
$$

12. The Klein 4 group is the unique group of order 4 not isomorphic to a cyclic group. $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has order 4 and it is not cyclic, so it is isomorphic to the Klein 4 group.
Every element of the Klein 4 group has order one or two. The elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ of order two are $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times 2 \mathbb{Z}_{4}$ and this group is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Thus the subgroups isomorphic to the

Klein group are:

$$
\begin{array}{ll}
\{(0,0,0),(0,1,0),(0,0,2),(0,1,2)\} & \{(0,0,0),(1,0,0),(0,0,2),(1,0,2)\} \\
\{(0,0,0),(1,0,0),(0,1,0),(1,1,0)\} & \{(0,0,0),(0,1,2),(1,0,0),(1,1,2)\} \\
\{(0,0,0),(1,0,2),(0,1,0),(1,1,2)\} & \{(0,0,0),(1,1,0),(0,0,2),(1,1,2)\} \\
\{(0,0,0),(0,1,2),(1,0,2),(1,1,0)\} . &
\end{array}
$$

16. Yes. Both groups are abelian of order $24=2^{3} \cdot 3$. By the fundamental theorem of finitely generated abelian groups, there are three abelian groups of order 24 up to isomorphism:

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \quad \text { and } \quad \mathbb{Z}_{8} \times \mathbb{Z}_{3}
$$

Consider the elements of order a non-trivial power of 2. The first group has elements only of order 2 , the second group has elements of order 2 and 4 and the third group has elements of order 2,4 and 8 .
The group $\mathbb{Z}_{2} \times \mathbb{Z}_{12}$ has elements of order four but not eight. Thus $\mathbb{Z}_{2} \times \mathbb{Z}_{12}$ is isomorphic to the second group in the list.
The group $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ also has elements of order four but not eight. Thus $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ is also isomorphic to the second group in the list.
But then $\mathbb{Z}_{2} \times \mathbb{Z}_{12}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ are isomorphic.
24. We first write down the prime factorisation of $720=72 \cdot 10=$ $2^{4} \cdot 3^{2} \cdot 5$.
Using the fundamental theorem of finitely generated abelian groups the abelian groups of order 720, up to isomorphism are:

$$
\begin{gathered}
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \\
\mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \\
\mathbb{Z}_{4} \times \mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{16} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}, \quad \mathbb{Z}_{16} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} .
\end{gathered}
$$

47. H contains the identity by assumption. Suppose that $h \in H$. Then $h^{2}=e$, the identity. Hence $h^{-1}=h \in H$ and so H is closed under taking inverses. Now suppose that $h_{i} \in H, i=1$ and 2 . Then

$$
\begin{aligned}
\left(h_{1} h_{2}\right)^{2} & =h_{1} h_{2} h_{1} h_{2} \\
& =h_{1}^{2} h_{2}^{2} \\
& =e,
\end{aligned}
$$

where we got from the first line to the second line as G is abelian. Therefore either $h_{1} h_{2}$ is the identity or it is has order two. In particular $h_{1} h_{2} \in H$ and H is closed under multiplication. Therefore H is a subgroup of G.
52. Suppose that G is a cyclic group. Then every subgroup H is cyclic. Every element of $H=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ has order either 1 or p and the order of H is p^{2} and so H is not cyclic. Therefore H is not isomorphic to a subgroup of a cyclic group G.
Now suppose that G does not contain a subgroup isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. The fundamental theorem of finitely generated abelian groups implies that G is isomorphic to

$$
\mathbb{Z}_{p_{1}^{a_{1}}} \times \mathbb{Z}_{p_{2}^{a_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{a_{n}}}
$$

where $p_{1}, p_{2}, \ldots, p_{n}$ are primes and $a_{1}, a_{2}, \ldots, a_{n}$ are positive invegers. Suppose that $p_{i}=p_{j}$. Then G contains a subgroup isomorphic to $\mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$. As \mathbb{Z}_{a}^{a} contains a subgroup isomorphic to $\mathbb{Z}_{p}, \mathbb{Z}_{p^{a}} \times \mathbb{Z}_{p^{b}}$ contains a subgroup isomorphic to $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, a contradiction.
Thus $p_{i}=p_{j}$ implies that $i=j$. But then G is a cyclic group.
Challenge Problems
45. We may assume that $G=\mathbb{Z}_{n}$. If d divides n then let $a=n / d$. Then

$$
\langle a\rangle
$$

is a subgroup of order d.
Now let H be a subgroup of G of order d. Then d divides n by Lagrange. On the other hand, the smallest element a of H is a generator of H. The order of a is n / a, so that $d=n / a$. But then $a=n / d$ and so there is only one subgroup of order d.
46. Partition the elements of \mathbb{Z}_{n} by their order. By Lagrange the order must be a divisor d of n. Let P_{d} be the elements of order d. Then

$$
n=\left|\mathbb{Z}_{n}\right|=\sum_{d \mid n}\left|P_{d}\right| .
$$

Now every element of P_{d} generates a subgroup of order d. But there is only such subgroup $H . H$ is isomorphic to \mathbb{Z}_{d} and $a \in \mathbb{Z}_{d}$ generates \mathbb{Z}_{d} if and only if a is coprime to d. Thus

$$
\left|P_{d}\right|=\phi(d) .
$$

Putting all of this together, we have

$$
n=\sum_{d \mid n} \phi(d) .
$$

47. Let n be the order of G. Partition the elements of G by their order. By Lagrange the order must be a divisor d of n. Let P_{d} be the elements of order d. Then

$$
n=|G|=\sum_{d \mid n}\left|P_{d}\right| .
$$

If $x^{m}=e$ always has at most m solutions then there is at most one subgroup of order m and so $\left|P_{d}\right| \leq \phi(d)$. Since we already saw that

$$
n=\sum_{d \mid n} \phi(d)
$$

we must have that $\left|P_{d}\right|=\phi(d)$ for all divisors d of n. In particular $\left|P_{n}\right|=\phi(n) \neq 0$ and so there are elements of order n. But then G is cyclic.

