
MODEL ANSWERS TO THE FIRST HOMEWORK

§10
5.

{ 0, 18}, 1+{ 0, 18} = { 1, 19}, 2+{ 0, 18} = { 2, 20}, . . . , 17+{ 0, 18} = { 17, 35}.
6. The group D4 has order eight and the subgroup H = {ρ0, µ2} has
order two and so the number of cosets is 4. One coset is H. Pick an
element not in H, for example, ρ1,

ρ1H = { ρ1, δ2}.
Pick an element not in either of these two left cosets, for example, ρ2,

ρ2H = { ρ2, µ1}.
This leaves two elements, which must form their own coset,

ρ3H = { ρ3, δ1}.
15. We first multiply out σ to represent it as a product of disjoint
cycles,

(1, 2, 4, 5)(2, 3) = (2, 3, 4, 5, 1) = (1, 2, 3, 4, 5).

So σ is a 5-cycle and the order of σ is five. The order of S5 is 5! =
5 · 4! = 120. So the index of σ is 4! = 24.
19. T: (a), (b), (c), (e), (g), (h), (j).
F: (d), (f), (i) (The Klein 4-group has no element of order 4).
27. Define

φ : H −→ Hg by the rule h −→ hg.

Suppose that y ∈ Hg. Then y = hg for some h and φ(h) = hg =
y. Thus φ is onto. Suppose that φ(h1) = φ(h2). Then h1g = h2g.
Multiplying both sides by g−1 on the right, we get h1 = h2. But then
φ is one to one.
30. False. Take G = S3 and H = {e, (1, 2)}. Let a = (1, 3, 2) and
b = (2, 3). Then a ∈ aH and

a = (1, 3, 2) = (2, 3)(1, 2) ∈ bH,
so that aH = bH. But

Hb = {(2, 3), (1, 2, 3)},
so that a /∈ Hb. As a ∈ Ha, Ha 6= Hb.
§11
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2. The elements of Z3 × Z4 are (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1),
(0, 2), (1, 2), (2, 2), (0, 3), (1, 3), (2, 3). The order of an element is the
lcm of the orders of the components:
1: (0, 0)
2: (0, 2)
3: (1, 0), (2, 0)
4: (0, 1), (0, 3)
6: (1, 2), (2, 2)
12: (1, 1), (2, 1), (1, 3), (2, 3).
Yes, this group is cyclic. For example, (1, 1) is a generator.
7. The order of 3 in Z4 is 4; the order of 6 in Z12 is 2; the order of 12
in Z20 is 5; the order of 16 in Z24 is 3.
So the order of (3, 6, 12, 16) in Z4×Z12×Z20×Z24 is 60, the lcm of 4,
2, 5 and 3.
10. The order of Z2×Z2×Z2 is 8. By Lagrange the order of a subgroup
is 1, 2, 4, or 8. If the order is 1 the subgroup is the trivial subgroup
and if the order is 8 we have all of G. So we list the subgroups of order
2 and 4. Every element of Z2 × Z2 × Z2, other than the identity, has
order two. Thus the subgroups of order two are:

{ (0, 0, 0), (1, 0, 0) } { (0, 0, 0), (0, 1, 0) } { (0, 0, 0), (0, 0, 1) } { (0, 0, 0), (1, 1, 1) }
{ (0, 0, 0), (0, 1, 1) } { (0, 0, 0), (1, 0, 1) } { (0, 0, 0), (1, 1, 0) }.

If you take any two elements of order two and add them together this
gives three elements of order two and together with the identity this is
a subgroup of order 4. Thus the subgroups of order four are:

{ (0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1) } { (0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1) }
{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) } { (0, 0, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1) }
{ (0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1) } { (0, 0, 0), (1, 1, 0), (0, 0, 1), (1, 1, 1) }
{ (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) }.

12. The Klein 4 group is the unique group of order 4 not isomorphic
to a cyclic group. Z2 × Z2 has order 4 and it is not cyclic, so it is
isomorphic to the Klein 4 group.
Every element of the Klein 4 group has order one or two. The elements
of Z2 × Z2 × Z4 of order two are Z2 × Z2 × 2Z4 and this group is
isomorphic to Z2 × Z2 × Z2. Thus the subgroups isomorphic to the
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Klein group are:

{ (0, 0, 0), (0, 1, 0), (0, 0, 2), (0, 1, 2) } { (0, 0, 0), (1, 0, 0), (0, 0, 2), (1, 0, 2) }
{ (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) } { (0, 0, 0), (0, 1, 2), (1, 0, 0), (1, 1, 2) }
{ (0, 0, 0), (1, 0, 2), (0, 1, 0), (1, 1, 2) } { (0, 0, 0), (1, 1, 0), (0, 0, 2), (1, 1, 2) }
{ (0, 0, 0), (0, 1, 2), (1, 0, 2), (1, 1, 0) }.

16. Yes. Both groups are abelian of order 24 = 23 · 3. By the fun-
damental theorem of finitely generated abelian groups, there are three
abelian groups of order 24 up to isomorphism:

Z2 × Z2 × Z2 × Z3, Z2 × Z4 × Z3 and Z8 × Z3.

Consider the elements of order a non-trivial power of 2. The first group
has elements only of order 2, the second group has elements of order 2
and 4 and the third group has elements of order 2, 4 and 8.
The group Z2 × Z12 has elements of order four but not eight. Thus
Z2 × Z12 is isomorphic to the second group in the list.
The group Z4×Z6 also has elements of order four but not eight. Thus
Z4 × Z6 is also isomorphic to the second group in the list.
But then Z2 × Z12 and Z4 × Z6 are isomorphic.
24. We first write down the prime factorisation of 720 = 72 · 10 =
24 · 32 · 5.
Using the fundamental theorem of finitely generated abelian groups the
abelian groups of order 720, up to isomorphism are:

Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z5, Z2 × Z2 × Z2 × Z2 × Z9 × Z5,

Z2 × Z2 × Z4 × Z3 × Z3 × Z5, Z2 × Z2 × Z4 × Z9 × Z5,

Z2×Z8×Z3×Z3×Z5, Z2×Z8×Z9×Z5, Z4×Z4×Z3×Z3×Z5,

Z4 × Z4 × Z9 × Z5, Z16 × Z3 × Z3 × Z5, Z16 × Z9 × Z5.

47. H contains the identity by assumption. Suppose that h ∈ H. Then
h2 = e, the identity. Hence h−1 = h ∈ H and so H is closed under
taking inverses. Now suppose that hi ∈ H, i = 1 and 2. Then

(h1h2)
2 = h1h2h1h2

= h21h
2
2

= e,

where we got from the first line to the second line as G is abelian.
Therefore either h1h2 is the identity or it is has order two. In particular
h1h2 ∈ H and H is closed under multiplication. Therefore H is a
subgroup of G.
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52. Suppose that G is a cyclic group. Then every subgroup H is cyclic.
Every element of H = Zp × Zp has order either 1 or p and the order
of H is p2 and so H is not cyclic. Therefore H is not isomorphic to a
subgroup of a cyclic group G.
Now suppose that G does not contain a subgroup isomorphic to Zp×Zp.
The fundamental theorem of finitely generated abelian groups implies
that G is isomorphic to

Zp
a1
1
× Zp

a2
2
× · · · × Zpann ,

where p1, p2, . . . , pn are primes and a1, a2, . . . , an are positive invegers.
Suppose that pi = pj. Then G contains a subgroup isomorphic to
Zpa × Zpb . As Za contains a subgroup isomorphic to Zp, Zpa × Zpb

contains a subgroup isomorphic to Zp × Zp, a contradiction.
Thus pi = pj implies that i = j. But then G is a cyclic group.
Challenge Problems
45. We may assume that G = Zn. If d divides n then let a = n/d.
Then

〈a〉
is a subgroup of order d.
Now let H be a subgroup ofG of order d. Then d divides n by Lagrange.
On the other hand, the smallest element a of H is a generator of H.
The order of a is n/a, so that d = n/a. But then a = n/d and so there
is only one subgroup of order d.
46. Partition the elements of Zn by their order. By Lagrange the order
must be a divisor d of n. Let Pd be the elements of order d. Then

n = |Zn| =
∑
d|n

|Pd|.

Now every element of Pd generates a subgroup of order d. But there
is only such subgroup H. H is isomorphic to Zd and a ∈ Zd generates
Zd if and only if a is coprime to d. Thus

|Pd| = φ(d).

Putting all of this together, we have

n =
∑
d|n

φ(d).

47. Let n be the order of G. Partition the elements of G by their order.
By Lagrange the order must be a divisor d of n. Let Pd be the elements
of order d. Then

n = |G| =
∑
d|n

|Pd|.
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If xm = e always has at most m solutions then there is at most one
subgroup of order m and so |Pd| ≤ φ(d). Since we already saw that

n =
∑
d|n

φ(d).

we must have that |Pd| = φ(d) for all divisors d of n. In particular
|Pn| = φ(n) 6= 0 and so there are elements of order n. But then G is
cyclic.
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