MODEL ANSWERS TO THE SECOND HOMEWORK

§13:
2. ϕ is not a homomorphism.

$$
\phi(0.5+0.5)=\phi(1)=1 \quad \text { but } \quad \phi(0.5)+\phi(0.5)=0+0=0 \neq 1
$$

so that

$$
\phi(0.5+0.5) \neq \phi(0.5)+\phi(0.5)
$$

3. ϕ is a homomorphism. Suppose that x and y are real numbers.

$$
\begin{aligned}
\phi(x y) & =|x y| \\
& =|x||y| \\
& =\phi(x) \phi(y) .
\end{aligned}
$$

4. ϕ is a homomorphism. Suppose that a and $b \in \mathbb{Z}_{6}$. We have to check that

$$
\phi(a+b)=\phi(a)+\phi(b)
$$

There are three cases:

- a and b are both even.
- one of a and b is even.
- neither a nor b is even.

If a and b are both even then the $a+b$ is even and both sides are 0 . If one of a and b is odd and the other is even then $a+b$ is odd and both sides are $1=1+0$.
If both a and b are odd then $a+b$ is even and both sides are $0=1+1$. Thus ϕ is a homomorphism.
6. ϕ is a homomorphism. Suppose that x and y are real numbers.

$$
\begin{aligned}
\phi(x+y) & =2^{x+y} \\
& =2^{x} 2^{y} \\
& =\phi(x) \phi(y) .
\end{aligned}
$$

8. ϕ is not a homomorphism. The problem is when G is not abelian. For example, consider $G=S_{3}$, the simplest non-abelian group. Take $a=(1,2)$ and $b=(2,3)$. Then

$$
\phi((1,2)(2,3))=\phi(3,1,2)=\phi(1,2,3)=(1,2,3)^{-1}=(1,3,2) .
$$

On the other hand,

$$
\phi(1,2) \phi(2,3)=(1,2)(2,3)=(3,1,2)=(1,2,3) \neq(1,3,2)
$$

Therefore

$$
\phi((1,2)(2,3)) \neq \phi(1,2) \phi(2,3) .
$$

16. The identity in \mathbb{Z}_{2} is zero. The elements of S_{3} which are sent to zero are the even permutations. So the kernel of ϕ is

$$
\operatorname{Ker} \phi=A_{3}=\{e,(1,2,3),(1,3,2)\}
$$

19. Let $\sigma=\phi(1)$. As we have a homomorphism

$$
\phi(2)=\sigma^{2}, \quad \phi(3)=\sigma^{3} \quad \text { and more generally } \quad \phi(n)=\sigma^{n} .
$$

We compute

$$
\sigma=(1,4,2,6)(2,5,7)=(2,5,7,6,1,4) .
$$

Since we get a 6 -cycle, σ has order 6 .
Therefore the kernel of ϕ is all multiples of 6 ,

$$
\operatorname{Ker} \phi=6 \mathbb{Z} .
$$

$$
\phi(20)=\sigma^{20}=\sigma^{18} \sigma^{2}=\sigma^{2}=(2,7,1)(5,6,4) .
$$

32. T: (a), (b), (d), (g), (h) (unless into means one to one)

F: (c), (e), (f), (i), (j).
35. Let $\pi: \mathbb{Z}_{2} \times \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2}$ denote projection onto the first factor. Then π is a homomorphism. If $\psi: \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{5}$ denote the natural injection then ψ is a homomorphism. Finally the composition

$$
\phi=\psi \circ \pi: \mathbb{Z}_{2} \times \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{5}
$$

is a non-trivial homomorphism, as the composition of group homomorphisms is a homomorphism.
44. Let H be the kernel of $\phi . \phi[G]$ is in one to one correspondence with the left cosets of H in G. So $|\phi[G]|$ is equal to the number of left cosets. By Lagrange this is finite and divides the order of G.
50. Suppose that $\phi[G]$ is abelian. If x and $y \in G$ then

$$
\begin{aligned}
\phi(x y) & =\phi(x) \phi(y) \\
& =\phi(y) \phi(x) \\
& =\phi(y x) .
\end{aligned}
$$

Multiplying on the right by $\phi(y x)^{-1}$ we get

$$
\begin{aligned}
& e^{\prime}=\phi(x y) \phi(y x)^{-1} \\
&=\phi(x y) \phi\left((y x)^{-1}\right) \\
&=\phi\left(x y(y x)^{-1}\right) \\
&=\phi\left(x y x^{-1} y^{-1}\right) . \\
& 2
\end{aligned}
$$

Therefore $x y x^{-1} y^{-1} \in \operatorname{Ker} \phi$.
Now suppose that $x y x^{-1} y^{-1} \in \operatorname{Ker} \phi$.

$$
\begin{aligned}
e^{\prime} & =\phi\left(x y x^{-1} y^{-1}\right) \\
& =\phi\left(x y(y x)^{-1}\right) \\
& =\phi(x y) \phi\left((y x)^{-1}\right) \\
& =\phi(x y) \phi(y x)^{-1} .
\end{aligned}
$$

Multiplying on the right by $\phi(y x)$, it follows that $\phi(x y)=\phi(y x)$. But then

$$
\begin{aligned}
\phi(x) \phi(y) & =\phi(x y) \\
& =\phi(y x) \\
& =\phi(y) \phi(x) .
\end{aligned}
$$

It follows that $\phi[G]$ is abelian.

