MODEL ANSWERS TO THE THIRD HOMEWORK

$\S 14: 2$. The order of $\mathbb{Z}_{4} \times \mathbb{Z}_{12}$ is 48 . The order of $\langle 2\rangle \times\langle 2\rangle$ is $2 \times 6=12$, since 2 has order 2 in \mathbb{Z}_{4} and 2 has order 6 in \mathbb{Z}_{12}. The order of the quotient group is $48 / 12=4$.
6 . The order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is $12 \cdot 18$. The order of $(4,3)$ is 6 , since the order of 4 in \mathbb{Z}_{12} is 3 and the order of 3 in \mathbb{Z}_{18} is 6 , and the lcm of 3 and 6 is 6 . Hence the order of $\langle(4,3)\rangle$ is 6 . The order of the quotient group is $(12 \cdot 18) / 6=12 \cdot 3=36$.
11. 3. We have

$$
(2,1)+\langle(1,1)\rangle+(2,1)+\langle(1,1)\rangle=(4,2)+\langle(1,1)\rangle
$$

and

$$
(4,2)+\langle(1,1)\rangle+(2,1)+\langle(1,1)\rangle=(6,3)+\langle(1,1)\rangle=(0,0)+\langle(1,1)\rangle .
$$

Thus

$$
3((2,1)+\langle(1,1)\rangle)=(0,0)+\langle(1,1)\rangle .
$$

On the other hand $(2,1) \notin\langle(1,1)\rangle$ so that the order of $(2,1)+\langle(1,1)\rangle$ is 3 .
23. T: (a), (b), (c), (d), (e), (g), (i),

F: (f), (h), (j).

