MODEL ANSWERS TO THE FOURTH HOMEWORK

§14: 31. Let H_{1} and H_{2} be two normal subgroups of a group G. We already know that $H_{1} \cap H_{2}$ is a subgroup of G. We check that it is normal. Pick $h \in H_{1} \cap H_{2}$ and $g \in G$. As $h \in H_{1}$ and H_{1} is normal,

$$
g h g^{-1} \in H_{1} .
$$

Similarly as $h \in H_{2}$ and H_{2} is normal,

$$
g h g^{-1} \in H_{2} .
$$

But then

$$
g h g^{-1} \in H_{1} \cap H_{2} .
$$

It follows that $H_{1} \cap H_{2}$ is normal.
§15: 1. $(0,1)$ generates the subgroup $\{0\} \times \mathbb{Z}_{4}$. The index of $\{0\} \times \mathbb{Z}_{4}$ inside $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is

$$
\frac{2 \cdot 4}{4}=2
$$

Thus the quotient is a finite abelian group of order 2. It must be isomorphic to \mathbb{Z}_{2}. We can also use the first isomorphism theorem. The projection map

$$
\pi: \mathbb{Z}_{2} \times \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2} \quad \text { given by } \quad(a, b) \longrightarrow a
$$

is a homomorphism, with image \mathbb{Z}_{2}. The kernel consists of all elements (a, b) of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ such that $a=0$, so that the kernel is

$$
\{0\} \times \mathbb{Z}_{4} .
$$

It follows by the first isomorphism theorem that the quotient group

$$
\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{4}}{\{0\} \times \mathbb{Z}_{4}}
$$

is isomorphic to \mathbb{Z}_{2}.
6. $(0,1)$ generates the subgroup $\{0\} \times \mathbb{Z}$. We use the first isomorphism theorem. The projection map

$$
\pi: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \quad \text { given by } \quad(a, b) \longrightarrow a
$$

is a homomorphism, with image \mathbb{Z}. The kernel consists of all elements (a, b) of $\mathbb{Z} \times \mathbb{Z}$ such that $a=0$, so that the kernel is

$$
\{0\} \times \mathbb{Z}
$$

It follows by the first isomorphism theorem that the quotient group

$$
\frac{\mathbb{Z} \times \mathbb{Z}}{\{0\} \times \mathbb{Z}}
$$

is isomorphic to \mathbb{Z}.
§18: $2.16 \cdot 3=48$. Modulo 32 this is 16 .
7. $n \mathbb{Z}$ is indeed a ring, a subring of the integers \mathbb{Z}. It is commutative, there is no unity, unless $n= \pm 1$ or $n=0$. If $n=0$ then $1=0$ inside the ring $0 \mathbb{Z}=\{0\}$ and it is not a field. It can only be a field if $n= \pm 1$ in which case $n \mathbb{Z}=\mathbb{Z}$. But even then 2 does not have a multiplicative inverse and so it is never a field.
8. \mathbb{Z}^{+}is not a ring. The problem is that \mathbb{Z}^{+}is not a group under addition; for example 1 does not have any additive inverse. If $n \geq 0$ then $n+1 \geq 1 \neq 0$.
Challenge Problems §15. 39.
(a) $(1,2,3)=(1,3)(1,2) \in A_{n}$. By symmetry every 3 -cycle belongs to A_{n}.
(b) We know that every element of A_{n} is a product of an even number of transpositions. If we arbitrarily pair together every term of the product, it is enough to show that the product of a pair of transpositions is a product of cycles. A pair of transpositions (a, b) and (c, d) comes in three different forms. The set

$$
\{a, b\} \cap\{c, d\}
$$

has 2,1 or 0 elements. Up to symmetry, we therefore get three cases:

$$
(a, b), \quad(c, d)= \begin{cases}(1,2) & (1,2) \\ (1,3) & (1,2) \\ (1,2) & (3,4)\end{cases}
$$

In the first case the product is the identity and there is nothing to prove. In the second case we have

$$
(1,3)(1,2)=(1,2,3)
$$

a 3 -cycle. Finally in the third case we have

$$
(1,2)(3,4)=(1,3,2)(1,3,4)
$$

a product of two 3 -cycles. It follows that every element of A_{n} is a product of 3-cycles.
(c) By symmetry we might as well assume that $r=1$ and $s=2$, and we want to show that A_{n} is generated by the set

$$
\{(1,2, i) \mid 3 \leq i \leq n\} .
$$

It is enough to show we get every 3 -cycle.

We compute the indicated products:

$$
(1,2, i)^{2}=(1, i, 2)=(2,1, i)
$$

so that

$$
(1,2, j)(1,2, i)^{2}=(1,2, j)(2,1, i)=(1, i, j)
$$

and

$$
(1,2, j)^{2}(1,2, i)=(2,1, j)(1,2, i)=(2, i, j)
$$

It follows that

$$
(1,2, i)^{2}(1,2, k)(1,2, j)^{2}(1,2, i)=(2, k, i)(2, i, j)=(i, j, k) .
$$

Suppose that (a, b, c) is an arbitrary 3 -cycle. Consider the cardinality of the intersection

$$
\{a, b, c\} \cap\{1,2\} .
$$

If it is two then we have either $(1,2, i)$ or $(2,1, i)$ and we are okay. If it is one then we have either $(1, i, j)$ or $(2, i, j)$ are we are okay. If it is zero we have (i, j, k) and we are okay.
(d) By symmetry we may assume that $(1,2,3) \in N$. Let $g=(1,2)(3, i)$ and $h=(1,2,3)^{2} \in N$. Since N is a normal subgroup we have $g h g^{-1} \in$ N. Now $(1,2,3)^{2}=(2,1,3)$ and so $g h g^{-1}$ is equal to

$$
(1,2, i) \in N
$$

By part (c) $N=A_{n}$.
(e) As N is non-trivial, we may pick $\sigma \in N$ such that σ is not the identity. Consider the cycle type of σ. We may always write σ as a product of disjoint cycles, where the length of the cycles is increasing (so first transpositions, then 3-cycles, etc). If the length of the longest cycle is greater than 3 we are in case II. Otherwise σ is a product of disjoint transpositions and 3 -cycles. If there is more than one 3cycle then we are in case III. If there is one 3 -cycle there are either no transposition and we are in case I or we are in case IV. Otherwise σ is a product of transpositions, of which there are least two since σ is even, and we are in case V.
We now check that if we are in one of these five cases then $N=A_{n}$. Observe that if ρ is in A_{n} then

$$
\sigma^{-1} \rho \sigma \rho^{-1}=\sigma^{-1}\left(\rho \sigma \rho^{-1}\right) \in N
$$

as N is a normal subgroup. In what follows it is convenient to first compute

$$
\sigma^{-1} \rho \sigma
$$

and multiply the result by ρ^{-1}. Note that to compute $\sigma^{-1} \rho \sigma$ we conjugate ρ by σ^{-1}.
Case I: $N=A_{n}$ by part (d).

Case II: Now suppose σ has a cycle of length greater than 3. Then σ has the form

$$
\mu\left(a_{1}, a_{2}, \ldots, a_{r}\right),
$$

where $r>3$ and μ fixes $a_{1}, a_{2}, \ldots, a_{r}$. As $\rho=\left(a_{1}, a_{2}, a_{3}\right) \in A_{n}$ we must have

$$
\sigma^{-1} \rho \sigma \rho^{-1}=\left(a_{r}, a_{1}, a_{2}\right)\left(a_{1}, a_{3}, a_{2}\right)=\left(a_{1}, a_{3}, a_{r}\right) \in N .
$$

But then we are in case I and $N=A_{n}$.
Case III: Now suppose that σ has no cycle of length greater than 4 but it is a product of at least two 3 -cycles. As the 3 -cycles at the end we have

$$
\sigma=\mu\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)
$$

where μ fixes $a_{1}, a_{2}, \ldots, a_{6}$. As $\rho=\left(a_{1}, a_{2}, a_{4}\right) \in A_{n}$ we must have

$$
\sigma^{-1} \rho \sigma \rho^{-1}=\left(a_{3}, a_{1}, a_{6}\right)\left(a_{2}, a_{1}, a_{4}\right)=\left(a_{1}, a_{4}, a_{2}, a_{6}, a_{3}\right) \in N .
$$

Thus N contains a 5 -cycle and so we are in case II. But then $N=A_{n}$. Case IV: Now suppose that σ is a product of transpositions and one 3 -cycle. As the 3 -cycle is at the end

$$
\sigma=\mu\left(a_{1}, a_{2}, a_{3}\right)
$$

where μ is a product of disjoint transpositions, which fix a_{1}, a_{2} and a_{3}. Then

$$
\begin{aligned}
\sigma^{2} & =\mu\left(a_{1}, a_{2}, a_{3}\right) \mu\left(a_{1}, a_{2}, a_{3}\right) \\
& =\mu^{2}\left(a_{1}, a_{2}, a_{3}\right)^{2} \\
& =\left(a_{2}, a_{1}, a_{3}\right) \in N .
\end{aligned}
$$

Thus N contains a 3 -cycle and we are in case I. But then $N=A_{n}$.
Case V: Now we suppose that σ is a product of an even number of disjoint transpositions. We may write

$$
\sigma=\mu\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}\right)
$$

where μ is a product of an even number of disjoint transpositions, which fix a_{1}, a_{2}, a_{3} and a_{4}. As $\rho=\left(a_{1}, a_{2}, a_{3}\right) \in A_{n}$ we must have

$$
\sigma^{-1} \rho \sigma \rho^{-1}=\left(a_{2}, a_{1}, a_{4}\right)\left(a_{2}, a_{1}, a_{3}\right)=\left(a_{1}, a_{3}\right)\left(a_{2}, a_{4}\right) \in N .
$$

Thus $\alpha=\left(a_{1}, a_{3}\right)\left(a_{2}, a_{4}\right) \in N$. As $n \geq 5$, we may pick

$$
i \notin\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \quad \text { where } \quad i \leq n .
$$

Let $\beta=\left(a_{1}, a_{3}, i\right) \in A_{n}$. Then

$$
\alpha \beta \alpha^{-1} \beta^{-1}=\left(a_{3}, a_{1}, i\right)\left(a_{3}, a_{1}, i\right)=\left(a_{1}, a_{3}, i\right) \in N .
$$

But then we are in case I and $N=A_{n}$.

