
MODEL ANSWERS TO THE FOURTH HOMEWORK

§14: 31. Let H1 and H2 be two normal subgroups of a group G. We
already know that H1 ∩ H2 is a subgroup of G. We check that it is
normal. Pick h ∈ H1 ∩H2 and g ∈ G. As h ∈ H1 and H1 is normal,

ghg−1 ∈ H1.

Similarly as h ∈ H2 and H2 is normal,

ghg−1 ∈ H2.

But then

ghg−1 ∈ H1 ∩H2.

It follows that H1 ∩H2 is normal.
§15: 1. (0, 1) generates the subgroup {0} × Z4. The index of {0} × Z4

inside Z2 × Z4 is
2 · 4

4
= 2.

Thus the quotient is a finite abelian group of order 2. It must be
isomorphic to Z2. We can also use the first isomorphism theorem. The
projection map

π : Z2 × Z4 −→ Z2 given by (a, b) −→ a,

is a homomorphism, with image Z2. The kernel consists of all elements
(a, b) of Z2 × Z4 such that a = 0, so that the kernel is

{0} × Z4.

It follows by the first isomorphism theorem that the quotient group

Z2 × Z4

{0} × Z4

is isomorphic to Z2.
6. (0, 1) generates the subgroup {0}×Z. We use the first isomorphism
theorem. The projection map

π : Z× Z −→ Z given by (a, b) −→ a,

is a homomorphism, with image Z. The kernel consists of all elements
(a, b) of Z× Z such that a = 0, so that the kernel is

{0} × Z.
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It follows by the first isomorphism theorem that the quotient group

Z× Z
{0} × Z

is isomorphic to Z.
§18: 2. 16 · 3 = 48. Modulo 32 this is 16.
7. nZ is indeed a ring, a subring of the integers Z. It is commutative,
there is no unity, unless n = ±1 or n = 0. If n = 0 then 1 = 0 inside
the ring 0Z = {0} and it is not a field. It can only be a field if n = ±1
in which case nZ = Z. But even then 2 does not have a multiplicative
inverse and so it is never a field.
8. Z+ is not a ring. The problem is that Z+ is not a group under
addition; for example 1 does not have any additive inverse. If n ≥ 0
then n+ 1 ≥ 1 6= 0.
Challenge Problems §15. 39.
(a) (1, 2, 3) = (1, 3)(1, 2) ∈ An. By symmetry every 3-cycle belongs to
An.
(b) We know that every element of An is a product of an even number
of transpositions. If we arbitrarily pair together every term of the prod-
uct, it is enough to show that the product of a pair of transpositions is
a product of cycles. A pair of transpositions (a, b) and (c, d) comes in
three different forms. The set

{ a, b} ∩ {c, d }
has 2, 1 or 0 elements. Up to symmetry, we therefore get three cases:

(a, b), (c, d) =


(1, 2) (1, 2)

(1, 3) (1, 2)

(1, 2) (3, 4).

In the first case the product is the identity and there is nothing to
prove. In the second case we have

(1, 3)(1, 2) = (1, 2, 3),

a 3-cycle. Finally in the third case we have

(1, 2)(3, 4) = (1, 3, 2)(1, 3, 4),

a product of two 3-cycles. It follows that every element of An is a
product of 3-cycles.
(c) By symmetry we might as well assume that r = 1 and s = 2, and
we want to show that An is generated by the set

{ (1, 2, i) | 3 ≤ i ≤ n }.
It is enough to show we get every 3-cycle.
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We compute the indicated products:

(1, 2, i)2 = (1, i, 2) = (2, 1, i).

so that
(1, 2, j)(1, 2, i)2 = (1, 2, j)(2, 1, i) = (1, i, j)

and
(1, 2, j)2(1, 2, i) = (2, 1, j)(1, 2, i) = (2, i, j).

It follows that

(1, 2, i)2(1, 2, k)(1, 2, j)2(1, 2, i) = (2, k, i)(2, i, j) = (i, j, k).

Suppose that (a, b, c) is an arbitrary 3-cycle. Consider the cardinality
of the intersection

{ a, b, c} ∩ {1, 2 }.
If it is two then we have either (1, 2, i) or (2, 1, i) and we are okay. If
it is one then we have either (1, i, j) or (2, i, j) are we are okay. If it is
zero we have (i, j, k) and we are okay.
(d) By symmetry we may assume that (1, 2, 3) ∈ N . Let g = (1, 2)(3, i)
and h = (1, 2, 3)2 ∈ N . Since N is a normal subgroup we have ghg−1 ∈
N . Now (1, 2, 3)2 = (2, 1, 3) and so ghg−1 is equal to

(1, 2, i) ∈ N.
By part (c) N = An.
(e) As N is non-trivial, we may pick σ ∈ N such that σ is not the
identity. Consider the cycle type of σ. We may always write σ as a
product of disjoint cycles, where the length of the cycles is increasing
(so first transpositions, then 3-cycles, etc). If the length of the longest
cycle is greater than 3 we are in case II. Otherwise σ is a product
of disjoint transpositions and 3-cycles. If there is more than one 3-
cycle then we are in case III. If there is one 3-cycle there are either no
transposition and we are in case I or we are in case IV. Otherwise σ
is a product of transpositions, of which there are least two since σ is
even, and we are in case V.
We now check that if we are in one of these five cases then N = An.
Observe that if ρ is in An then

σ−1ρσρ−1 = σ−1(ρσρ−1) ∈ N
as N is a normal subgroup. In what follows it is convenient to first
compute

σ−1ρσ

and multiply the result by ρ−1. Note that to compute σ−1ρσ we con-
jugate ρ by σ−1.
Case I: N = An by part (d).
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Case II: Now suppose σ has a cycle of length greater than 3. Then σ
has the form

µ(a1, a2, . . . , ar),

where r > 3 and µ fixes a1, a2, . . . , ar. As ρ = (a1, a2, a3) ∈ An we must
have

σ−1ρσρ−1 = (ar, a1, a2)(a1, a3, a2) = (a1, a3, ar) ∈ N.
But then we are in case I and N = An.
Case III: Now suppose that σ has no cycle of length greater than 4
but it is a product of at least two 3-cycles. As the 3-cycles at the end
we have

σ = µ(a4, a5, a6)(a1, a2, a3),

where µ fixes a1, a2, . . . , a6. As ρ = (a1, a2, a4) ∈ An we must have

σ−1ρσρ−1 = (a3, a1, a6)(a2, a1, a4) = (a1, a4, a2, a6, a3) ∈ N.
Thus N contains a 5-cycle and so we are in case II. But then N = An.
Case IV: Now suppose that σ is a product of transpositions and one
3-cycle. As the 3-cycle is at the end

σ = µ(a1, a2, a3),

where µ is a product of disjoint transpositions, which fix a1, a2 and a3.
Then

σ2 = µ(a1, a2, a3)µ(a1, a2, a3)

= µ2(a1, a2, a3)
2

= (a2, a1, a3) ∈ N.
Thus N contains a 3-cycle and we are in case I. But then N = An.
Case V: Now we suppose that σ is a product of an even number of
disjoint transpositions. We may write

σ = µ(a3, a4)(a1, a2),

where µ is a product of an even number of disjoint transpositions, which
fix a1, a2, a3 and a4. As ρ = (a1, a2, a3) ∈ An we must have

σ−1ρσρ−1 = (a2, a1, a4)(a2, a1, a3) = (a1, a3)(a2, a4) ∈ N.
Thus α = (a1, a3)(a2, a4) ∈ N . As n ≥ 5, we may pick

i /∈ { a1, a2, a3, a4 } where i ≤ n.

Let β = (a1, a3, i) ∈ An. Then

αβα−1β−1 = (a3, a1, i)(a3, a1, i) = (a1, a3, i) ∈ N.
But then we are in case I and N = An.

4


