MODEL ANSWERS TO THE FIFTH HOMEWORK

§18: 12. This is a ring; it is a subring of the real numbers. It is commutative, with unity. It is (somewhat suprisingly) a field. Note that

$$
(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2}
$$

Also note that if $a^{2}-2 b^{2}=0$ then $a=b=0$ as $\sqrt{2}$ is irrational. Thus if $a+b \sqrt{2} \neq 0$ then

$$
\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}
$$

is the multiplicative inverse of $a+b \sqrt{2}$.
16. The elements of \mathbb{Z}_{5} are $0,1,2,3$ and 4 . 0 is certainly not a unit.

$$
1 \cdot 1=1 \quad 2 \cdot 3=1 \quad \text { and } \quad 4^{2}=4 \cdot 4=1
$$

so that the units are $1,2,3$ and 4 .
18. Suppose that $(a, b, c) \in \mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$. Then (a, b, c) is a unit if and only if we can find $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ such that

$$
(1,1,1)=(a, b, c) \cdot\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}, c c^{\prime}\right)
$$

But then a, b and c are units, so that $a= \pm 1, b \neq 0$ and $c= \pm 1$.
33. T: (a), (e), (g), (h), (i), (j)

F: (b), (c), (d), (f).
40. Suppose not, suppose that

$$
\phi: 2 \mathbb{Z} \longrightarrow 3 \mathbb{Z}
$$

is an isomorphism. Let $a=\phi(2)$. Then

$$
\begin{aligned}
\phi(4) & =\phi(2+2) \\
& =\phi(2)+\phi(2) \\
& =a+a \\
& =2 a .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\phi(4) & =\phi(2 \cdot 2) \\
& =\phi(2) \cdot \phi(2) \\
& =a \cdot a \\
& =a^{2} .
\end{aligned}
$$

Thus $a^{2}=2 a$. This equation holds in $3 \mathbb{Z} \subset \mathbb{C}$. Thus a is a complex solution of the polynomial equation:

$$
x^{2}=2 x
$$

We know the solutions to this equation, either $x=0$ or $x=2.2 \notin 3 \mathbb{Z}$. Thus $x=0$. In this case the kernel of ϕ is non-trivial and ϕ is not one to one. Thus ϕ is not an isomorphism.
46. By assumption we may find m and n such that $a^{m}=b^{n}=0$. Let $d=m+n-1$ and consider $(a+b)^{d}$. Note that
$a^{i}=a^{m} a^{i-m}=0 \quad$ and $\quad b^{j}=b^{n} b^{j-n}=0 \quad$ for $i \geq m$ and $j \geq n$.
Therefore, if we apply the binomial theorem, which holds in a commutative ring by the usual inductive argument, we get

$$
\begin{aligned}
(a+b)^{d} & =\sum_{i+j=d}\binom{d}{i} a^{i} b^{j} \\
& =\sum_{i=m}^{d}\binom{d}{i} a^{i} b^{d-i}+\sum_{j=n}^{d}\binom{d}{j} a^{d-j} b^{j} \\
& =0 .
\end{aligned}
$$

§19: 1. We can factor this polynomial as follows:

$$
x^{3}-2 x^{2}-3 x=x\left(x^{2}-2 x-3\right)=x(x-3)(x+1) .
$$

Thus three obvious solutions to the equation

$$
x^{3}-2 x^{2}-3 x=x(x-3)(x+1)=0
$$

are $x=0, x=3$ and $x=-1=11$. However \mathbb{Z}_{12} has zero divisors,

$$
2 \cdot 6=3 \cdot 4=3 \cdot 8=4 \cdot 6=4 \cdot 9=6 \cdot 6=6 \cdot 8=6 \cdot 10=8 \cdot 9=0,
$$

in \mathbb{Z}_{12}. The jumps between the numbers $x-3, x$ and $x+1$ are 1,3 and 4.
So we also get the solutions $x=5, x=8$ and $x=9$.
6 . The identity in $\mathbb{Z} \times \mathbb{Z}$ is $(1,1)$.

$$
n \cdot(1,1)=(n, n) .
$$

This is equal to zero if and only if $n=0$. Thus the characteristic is zero.
11.

$$
\begin{aligned}
(a+b)^{4} & =a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& =a^{4}+2 a^{2} b^{2}+b^{4},
\end{aligned}
$$

using the binomial theorem and the fact that $4=0$ in the ring.
17. T: (b), (e), (f), (h), (i)

F: (a), (c), (d), (g), (j).

3. Challenge Problems

$\S 18: 52$. Suppose that m and $n \in \mathbb{Z}$. Then we get $(m, n) \in \mathbb{Z}_{r} \times \mathbb{Z}_{s}$. Since there is an isomorphism

$$
\phi: \mathbb{Z}_{r s} \longrightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s}
$$

we may find $a \in \mathbb{Z}_{r s}$ such that $\phi(a)=(m, n)$. But then there is an integer x which represents a such that $x=m \bmod r$ and $x=n$ $\bmod s$.
53. (a) Let $r_{1}, r_{2}, \ldots, r_{n}$ be n positive integers which are pairwise coprime, so that if $i \neq j$ then r_{i} and r_{j} are coprime. Let r be the product of $r_{1}, r_{2}, \ldots, r_{n}$. Then there is a ring isomorphism

$$
\phi: \mathbb{Z}_{r} \longrightarrow \mathbb{Z}_{r_{1}} \times \mathbb{Z}_{r_{2}} \times \cdots \times \mathbb{Z}_{r_{n}}
$$

Since $r_{1}, r_{2}, \ldots, r_{n}$ are pairwise coprime, it follows that

$$
\mathbb{Z}_{r} \quad \text { and } \quad \mathbb{Z}_{r_{1}} \times \mathbb{Z}_{r_{2}} \times \cdots \times \mathbb{Z}_{r_{n}}
$$

are both cyclic groups of order r, with generators 1 and $(1,1, \ldots, 1)$. Therefore the map which sends m to $m \cdot(1,1, \ldots, 1)$ is a group isomorphism. This map is also a ring isomorphism as

$$
\begin{aligned}
\phi(a b) & =(a b) \cdot(1,1, \ldots 1) \\
& =[a \cdot(1,1, \ldots 1)][b \cdot(1,1, \ldots 1)] \\
& =\phi(a) \phi(b)
\end{aligned}
$$

(b) The integers $a_{1}, a_{2}, \ldots, a_{n}$ define an element $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}_{b_{1}} \times$ $\mathbb{Z}_{b_{2}} \times \cdots \times \mathbb{Z}_{b_{n}}$. By part (a) we may find a such that $\phi(a)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. a corresponds to a positive integer x such that $x=a_{i} \bmod b_{i}$.

