MODEL ANSWERS TO THE SIXTH HOMEWORK

1. $\S 20: 2$. We want to find an element of \mathbb{Z}_{11} of order 10 . We just use trial and error. The order of any element divides 10 , so if the order is neither 2 nor 5 then the order must be 10 .

$$
2^{2}=4 \quad \text { and } \quad 2^{5}=2 \cdot 2^{4}=2 \cdot 16=2 \cdot 5=10 \quad \bmod 11
$$

Neither of these are 1 , so 2 has order 10 . Thus 2 generates the group of units of \mathbb{Z}_{11}.
6. 19 is prime and so by Fermat we know that

$$
2^{18}=1 \bmod 19 .
$$

So we'd first like to compute the remainder when we divide 18 into 2^{17}. This is half of the remainder when you divide 9 into 2^{16}. Note that

$$
\begin{aligned}
\phi(9) & =9-3 \\
& =6 .
\end{aligned}
$$

By Euler's Theorem

$$
2^{6}=1 \quad \bmod 18
$$

Thus

$$
\begin{aligned}
2^{16} & =2^{2 \cdot 6+4} \\
& =\left(2^{6}\right)^{2} 2^{4} \\
& =2^{4} \\
& =16 \\
& =-2 \bmod 18 .
\end{aligned}
$$

If we multiply this by 2 we get $-4=14 \bmod 18$. Thus

$$
\begin{aligned}
2^{2^{17}} & =2^{14} \\
& =\left(2^{4}\right)^{3} 2^{2} \\
& =(-3)^{3} 2^{2} \\
& =-27 \cdot 2^{2} \\
& =-8 \cdot 2^{2} \\
& =-16 \cdot 2 \\
& =3 \cdot 2 \\
& =6 \quad \bmod 19
\end{aligned}
$$

So the answer is $2^{2^{17}}=6+1=7 \bmod 19$.
8. Consider the elements of $\mathbb{Z}_{p^{2}}$. There are p^{2} numbers between 0 and $p^{2}-1 . a$ is coprime to p^{2} if and only if a is not divisible by p. There are p multiples of p between 0 and $p^{2}-1$,

$$
0 \quad p \quad 2 p \quad 3 p \quad \ldots \quad(p-1) p=p^{2}-p
$$

So $p^{2}-p$ elements of $\mathbb{Z}_{p^{2}}$ are coprime to p. Thus

$$
\phi\left(p^{2}\right)=p^{2}-p .
$$

10.

$$
\begin{aligned}
\phi(24) & =\phi(3 \cdot 8) \\
& =\phi(3) \phi(8) \\
& =(3-1)(8-4) \\
& =2 \cdot 4 \\
& =8 .
\end{aligned}
$$

Thus Euler's Theorem implies that

$$
7^{8}=1 \quad \bmod 24
$$

Therefore

$$
\begin{aligned}
7^{1000} & =7^{2^{3} \cdot 5^{3}} \\
& =\left(7^{8}\right)^{5^{3}} \\
& =1 \quad \bmod 24 .
\end{aligned}
$$

23. T: (b), (c), (d), (e), (f), (h), (j)

F: (a), (g), (i).
27. Suppose that $a \in \mathbb{Z}_{p}$ is its own inverse. Then

$$
a \cdot a=1
$$

so that a is a solution of the polynomial equation

$$
x^{2}-1=0
$$

On the other hand we can factor this polynomial in \mathbb{Z}_{p} in the usual way

$$
x^{2}-1=(x-1)(x+1),
$$

so that

$$
(a-1)(a+1)=0 .
$$

Since \mathbb{Z}_{p} is a field, we can cancel, unless $a-1=0$ or $a+1=0$. In this case $a=1$ or $a=-1=p-1$. Conversely $a=1$ and $a=p-1$ are their own multiplicative inverses.
2. §21: $2 . F$ is the set of all real numbers of the form

$$
\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
$$

4. T: (a), (c), (e), (f), (i), (j)

F: (b), (d), (g).
3. Challenge Problems §20: 28. Consider writing out the product:

$$
(p-1)!=(p-1)(p-2)(p-3) \ldots 1 .
$$

The numbers from 1 to $p-1$ consist of all the units of \mathbb{Z}_{p}. Every unit a has an inverse b and $a b=1$. So if we pair all the units with their inverses in this product what is left is the product of all elements which are their own inverse. By 27 this consists of 1 and $p-1$. So

$$
\begin{aligned}
(p-1)! & =(p-1)(p-2)(p-3) \ldots 1 \\
& =(p-1) 1 \\
& =(p-1) \\
& =-1 \quad \bmod p .
\end{aligned}
$$

29. As suggested

$$
m=383838=37 \cdot 19 \cdot 13 \cdot 7 \cdot 3 \cdot 2 .
$$

is the prime factorisation of 383838 . As $n^{37}-n$ is divisible by m if and only if it is divisible by each prime factor, it suffices to check that $n^{37}-n$ is divisible by $p=2,3,7,13,19$ and 37 , that is, the remainder is zero.
As $n^{37}-n=n\left(n^{36}-1\right)$ if n is a multiple of p there is nothing to prove. Otherwise we may assume that n is coprime to p and it suffices to prove that

$$
n^{36}=1 \quad \bmod p .
$$

By Fermat's Theorem we know that

$$
n^{p-1}=1 \quad \bmod p,
$$

and so it is enough to check that $p-1$ divides 36 . Note that $p-1$ is equal to $1,2,6,12$ and 36 all of which divide 36 .
Thus $n^{37}-n$ is divisible by 383838 .
30. The divisors of 36 are $1,2,3,4,6,12,18$ and 36 . If we add one to these numbers we get $2,3,4,5,7,13,19$ and 37 . Of these, $2,3,5,7$, 13,19 and 37 are prime. Fermat's Theorem implies that if n is not a multiple of one of these primes p then $n^{36}-1$ is divisible by p.
So p divides $n^{37}-n$. Thus the product

$$
2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37=1919190
$$

divides $n^{37}-n$.

