
MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. §22: 4. We have

f(x) + g(x) = (2x3 + 4x2 + 3x+ 2) + (3x4 + 2x+ 4)

= 3x4 + 2x3 + 4x2 + 1

and

f(x)g(x) = (2x3 + 4x2 + 3x+ 2)(3x4 + 2x+ 4)

= x7 + 2x6 + 4x5 + x3 + 2x2 + x+ 3.

6. A general polynomial of degree at most 2 looks like ax2 + bx + c ∈
Z5[x]. There are five possibilities for a, five possibilities for b and five
possibilities for c. Therefore the total number of polynomials of degree
at most 2 is 53 = 125.
14. Probably the easiest way is simply trial and error:

φ0(x
5 + 3x3 + x2 + 2x) = 05 + 3 · 03 + 02 + 2 · 0 = 0

φ1(x
5 + 3x3 + x2 + 2x) = 15 + 3 · 13 + 12 + 2 · 1 = 2

φ2(x
5 + 3x3 + x2 + 2x) = 25 + 3 · 23 + 22 + 2 · 2 = 2

φ3(x
5 + 3x3 + x2 + 2x) = 35 + 3 · 33 + 32 + 2 · 3 = 4

φ4(x
5 + 3x3 + x2 + 2x) = 45 + 3 · 43 + 42 + 2 · 4 = 0.

Therefore 0 and 4 are the zeroes of x5 + 3x3 + x2 + 2x.
One can also attack this problem by using a little bit of theory. For a
start notice that when we evaluate the polynomial x5 − x = x5 + 4x
at any point of Z5 then we get zero, by Fermat. So we might as well
evaluate

x5 + 3x3 + x2 + 2x− (x5 − x) = 3x3 + x2 + 3x

as we will get the same values. On the other hand, we can pull out a
factor x from this polynomial to get

3x3 + x2 + 3x = x(3x2 + x+ 3) = 3x(x2 + 2x+ 1)

So if α is a zero of x5 + 3x3 + x2 + 2x either α = 0 or α 6= 0 is a zero of
x2 + 2x+ 1. But x2 + 2x+ 1 = (x+ 1)2 and visibly this is zero if and
only if x+ 1 = 0, that is, x = 4.
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20.

f(x, y) = (3x3 + 2x)y3 + (x2 − 6x+ 1)y2 + (x4 − 2x)y + (x4 − 3x2 + 2)

= 3x3y3 + 2xy3 + x2y2 − 6xy2 + y2 + x4y − 2xy + x4 − 3x2 + 2

= (y + 1)x4 + (3y3)x3 + (y2 − 3)x2 + (2y3 − 6y2 − 2y)x+ (y2 + 2).

23. T: (a), (b), (c), (d), (g), (h), (i),
F: (e), (f), (j).
27. (a) Suppose that

f(x) =
∑

aix
i and g(x) =

∑
bix

i.

Then

D(f(x) + g(x)) = D
(∑

(ai + bi)x
i
)

=
∑

i · (ai + bi)x
i−1

=
∑

i · aixi−1 +
∑

i · bixi−1

= D(f) +D(g).

Therefore D is a group homomorphism.
It is not a ring homomorphism. In fact D satisfies Leibniz’s rule. If
f(x) = g(x) = x then

D(f(x)g(x)) = D(x2)

= 2 · x
6= 2 · 1
= D(x) +D(x).

(b) The kernel of D is all constant polynomials, all polynomials of
degree zero, plus zero.
(c) D is onto, so the image of F [x] is F [x]. Suppose that

g(x) =
∑

aix
i ∈ F [x].

As the characteristic of F is zero, i · 1 6= 0 and if we put

f(x) =
∑ ai

i · 1
xi ∈ F [x]

then

D(f(x)) =
∑

i · 1 ai
i · 1

xi =
∑

aix
i = g(x).

§23: 2. We have q(x) = 5x4 + 5x2 + 6x and r(x) = x+ 2 so that

(x6 + 3x5 + 4x2 − 3x+ 2) = (5x4 + 5x2 + 6x)(3x2 + 2x− 3) + (x+ 2).
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10. To find the linear factors of x3+2x2+2x+1 ∈ Z7[x], the first thing
to do is find the zeroes. One way to proceed is brute computation.

φ0(x
3 + 2x2 + 2x+ 1) = 03 + 2 · 02 + 2 · 0 + 1 = 1

φ1(x
3 + 2x2 + 2x+ 1) = 13 + 2 · 12 + 2 · 1 + 1 = 6

φ2(x
3 + 2x2 + 2x+ 1) = 23 + 2 · 22 + 2 · 2 + 1 = 0

φ3(x
3 + 2x2 + 2x+ 1) = 33 + 3 · 32 + 2 · 3 + 1 = 3

φ4(x
3 + 2x2 + 2x+ 1) = 43 + 2 · 42 + 2 · 4 + 1 = 0

φ5(x
3 + 2x2 + 2x+ 1) = 53 + 2 · 52 + 2 · 5 + 1 = 4

φ6(x
3 + 2x2 + 2x+ 1) = 63 + 2 · 62 + 2 · 6 + 1 = 0.

Thus

x3 +2x2 +2x+1 = (x−2)(x−4)(x−6) = (x+5)(x+3)(x+1) ∈ Z7[x].

Or we could observe that since 2 is a zero, we must be able to divide
x3 + 2x2 + 2x + 1 by x − 2 = x + 5. If we run the division algorithm
we get

x3 + 2x2 + 2x+ 1 = (x+ 5)(x2 + 4x+ 3).

We now look for zeroes of x2 + 4x+ 3. We know that 0 and 1 are not
zeroes.

φ2(x
2 + 4x+ 3) = 22 + 4 · 2 + 3 = 1

φ3(x
2 + 4x+ 3) = 32 + 4 · 3 + 3 = 3

φ4(x
2 + 4x+ 3) = 42 + 4 · 4 + 3 = 0.

Thus 4 is a zero of x2 +4x+3. It follows that we can divide x2 +4x+3
by x− 4 = x+ 3. If we run the division algorithm we get

x2 + 4x+ 3 = (x+ 3)(x+ 1).

Thus
x3 + 2x2 + 2x+ 1 = (x+ 5)(x+ 3)(x+ 1) ∈ Z7[x],

as before.
14. There are many ways to show that f(x) = x2 +8x−2 is irreducible
over Q. First of all by Gauss, it suffices to show that it is irreducible
over Z.
If it is not irreducible it factors as

x2 + 8x− 2 = (ax+ b)(cxd+ d) ∈ Z[x].

As the coefficient of x2 is 1, we have ac = 1, so that a = c = 1 or
a = c = −1. We may assume that a = c = 1. Thus

x2 + 8x− 2 = (x+ b)(xd+ d) ∈ Z[x].
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The product of b and d is two, bd = 2. Thus b = ±1 and d = ±2, up
to switching b and d. The sum of b and d is 8, b+ d = 8. On the other
hand, the maximum of the sum of ±1 and ±2 is 1 + 2 = 3, nowhere
near 8. Thus x2 + 8x − 2 is irreducible over Z and so it is irreducible
over Q.
We could also apply Eisenstein with p = 2.
The discriminant of x2 + 8x − 2 is 82 − 4 · −2 = 8 · 9 = 72 > 0. Thus
x2 + 8x − 2 has two real roots, α1 and α2, by the quadratic formula.
Thus

x2 + 8x− 2 = (x− α1)(x− α2) ∈ R[x],

is reducible over R. In particular it is certainly reducible over C.
21. Yes. Take p = 5. Then p divides −25, 10 and 30 but p2 does not
divide −30.
25. T: (a), (b), (c), (e), (f), (g), (h), (i),
F: (d), (j) [depending on whether you allow the polynomial to be zero].
28. A polynomial of degree 3 is irreducible if and only if it has no
zeroes. So we just want to list the polynomials of degree 3 with no
zeroes. The general polynomial of degree three looks like

ax3 + bx2 + cx+ d ∈ Z2[x].

Since this has degree 3, a 6= 0 and so we may assume that a = 1, so
that we have a polynomial of the form

x3 + bx2 + cx+ d ∈ Z2[x].

α = 0 is a zero if and only if d = 0. So we may assume that d = 1 and
we have a polynomial of the form

x3 + bx2 + cx+ 1 ∈ Z2[x].

α = 1 is a zero if and only if 1 + b+ c+ 1 = 0 so that b+ c = 0. This
happens if b = c = 0 or b = c = 1. So α = 1 is not a zero if b = 1, c = 0
or b = 0, c = 1. Thus the irreducible polynomials in Z2[x] of degree 3
are

x3 + x2 + 1 and x3 + x+ 1.

3. Challenge Problems §23: 37. (a) Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
∑

aix
i

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0 =
∑

bix
i,

be two polynomials in Z[x].
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Then

σm(f(x) + g(x)) = σm(
∑
i

aix
i +
∑
i

bix
i)

= σm(
∑
i

(ai + bi)x
i)

=
∑
i

σm(ai + bi)x
i

=
∑
i

(σm(ai) + σm(bi))x
i

=
∑
i

σm(ai)x
i +
∑
i

σm(bi)x
i

= σm(
∑
i

aix
i) + σm(

∑
i

bix
i)

= σm(f(x)) + σm(g(x)).

Thus σm is a group homomorphism.
We now check it is a ring homomorphism.

σm(f(x)g(x)) = σm((
∑
i

aix
i)(
∑
i

bix
i))

= σm(
∑
i

(
∑
j

ajbi−j)x
i)

=
∑
i

σm(
∑
j

ajbi−j)x
i

=
∑
i

(
∑
j

σm(ai)σm(bi−j))x
i

= (
∑
i

σm(ai)x
i)(
∑
i

σm(bi)x
i)

= σm(
∑
i

aix
i)σm(

∑
i

bix
i)

= σm(f(x))σm(g(x)).

Therefore σm is a ring homomorphism.
(b) Suppose not, suppose that f(x) is reducible. Then we may find
g(x) and h(x) polynomials with rational coefficients such that

f(x) = g(x)h(x),

and both have degree less than n. By Gauss, we may assume that g(x)
and h(x) have integer coefficients. Since σm is a ring homomorphism,
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we have
σm(f(x)) = σm(g(x))σm(h(x)).

The LHS has degree n by assumption. Both σm(g(x)) and σm(h(x))
have degree less than n, a contradiction.
Thus f(x) is irreducible over the rationals.
(c) Take m = 5. Then

σ5(x
3 + 17x+ 36) = x3 + 2x+ 1 ∈ Z5[x].

We check that the RHS is irreducible. It suffices to check that it has
no zeroes. We compute

φ0(x
3 + 2x+ 1) = 03 + 2 · 0 + 1 = 1

φ1(x
3 + 2x+ 1) = 13 + 2 · 1 + 1 = 4

φ2(x
3 + 2x+ 1) = 23 + 2 · 2 + 1 = 3

φ3(x
3 + 2x+ 1) = 33 + 2 · 3 + 1 = 4

φ4(x
3 + 2x+ 1) = 43 + 2 · 4 + 1 = 3.

Thus x3+2x+1 ∈ Z5[x] is irreducible and so x3+17x+36 is irreducible
over the rationals by (b).
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