MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. §22: 4. We have

$$
\begin{aligned}
f(x)+g(x) & =\left(2 x^{3}+4 x^{2}+3 x+2\right)+\left(3 x^{4}+2 x+4\right) \\
& =3 x^{4}+2 x^{3}+4 x^{2}+1
\end{aligned}
$$

and

$$
\begin{aligned}
f(x) g(x) & =\left(2 x^{3}+4 x^{2}+3 x+2\right)\left(3 x^{4}+2 x+4\right) \\
& =x^{7}+2 x^{6}+4 x^{5}+x^{3}+2 x^{2}+x+3 .
\end{aligned}
$$

6. A general polynomial of degree at most 2 looks like $a x^{2}+b x+c \in$ $\mathbb{Z}_{5}[x]$. There are five possibilities for a, five possibilities for b and five possibilities for c. Therefore the total number of polynomials of degree at most 2 is $5^{3}=125$.
7. Probably the easiest way is simply trial and error:

$$
\begin{aligned}
& \phi_{0}\left(x^{5}+3 x^{3}+x^{2}+2 x\right)=0^{5}+3 \cdot 0^{3}+0^{2}+2 \cdot 0=0 \\
& \phi_{1}\left(x^{5}+3 x^{3}+x^{2}+2 x\right)=1^{5}+3 \cdot 1^{3}+1^{2}+2 \cdot 1=2 \\
& \phi_{2}\left(x^{5}+3 x^{3}+x^{2}+2 x\right)=2^{5}+3 \cdot 2^{3}+2^{2}+2 \cdot 2=2 \\
& \phi_{3}\left(x^{5}+3 x^{3}+x^{2}+2 x\right)=3^{5}+3 \cdot 3^{3}+3^{2}+2 \cdot 3=4 \\
& \phi_{4}\left(x^{5}+3 x^{3}+x^{2}+2 x\right)=4^{5}+3 \cdot 4^{3}+4^{2}+2 \cdot 4=0 .
\end{aligned}
$$

Therefore 0 and 4 are the zeroes of $x^{5}+3 x^{3}+x^{2}+2 x$.
One can also attack this problem by using a little bit of theory. For a start notice that when we evaluate the polynomial $x^{5}-x=x^{5}+4 x$ at any point of \mathbb{Z}_{5} then we get zero, by Fermat. So we might as well evaluate

$$
x^{5}+3 x^{3}+x^{2}+2 x-\left(x^{5}-x\right)=3 x^{3}+x^{2}+3 x
$$

as we will get the same values. On the other hand, we can pull out a factor x from this polynomial to get

$$
3 x^{3}+x^{2}+3 x=x\left(3 x^{2}+x+3\right)=3 x\left(x^{2}+2 x+1\right)
$$

So if α is a zero of $x^{5}+3 x^{3}+x^{2}+2 x$ either $\alpha=0$ or $\alpha \neq 0$ is a zero of $x^{2}+2 x+1$. But $x^{2}+2 x+1=(x+1)^{2}$ and visibly this is zero if and only if $x+1=0$, that is, $x=4$.
20.

$$
\begin{aligned}
f(x, y) & =\left(3 x^{3}+2 x\right) y^{3}+\left(x^{2}-6 x+1\right) y^{2}+\left(x^{4}-2 x\right) y+\left(x^{4}-3 x^{2}+2\right) \\
& =3 x^{3} y^{3}+2 x y^{3}+x^{2} y^{2}-6 x y^{2}+y^{2}+x^{4} y-2 x y+x^{4}-3 x^{2}+2 \\
& =(y+1) x^{4}+\left(3 y^{3}\right) x^{3}+\left(y^{2}-3\right) x^{2}+\left(2 y^{3}-6 y^{2}-2 y\right) x+\left(y^{2}+2\right) .
\end{aligned}
$$

23. T: (a), (b), (c), (d), (g), (h), (i),

F: (e), (f), (j).
27. (a) Suppose that

$$
f(x)=\sum a_{i} x^{i} \quad \text { and } \quad g(x)=\sum b_{i} x^{i}
$$

Then

$$
\begin{aligned}
D(f(x)+g(x)) & =D\left(\sum\left(a_{i}+b_{i}\right) x^{i}\right) \\
& =\sum i \cdot\left(a_{i}+b_{i}\right) x^{i-1} \\
& =\sum i \cdot a_{i} x^{i-1}+\sum i \cdot b_{i} x^{i-1} \\
& =D(f)+D(g) .
\end{aligned}
$$

Therefore D is a group homomorphism.
It is not a ring homomorphism. In fact D satisfies Leibniz's rule. If $f(x)=g(x)=x$ then

$$
\begin{aligned}
D(f(x) g(x)) & =D\left(x^{2}\right) \\
& =2 \cdot x \\
& \neq 2 \cdot 1 \\
& =D(x)+D(x) .
\end{aligned}
$$

(b) The kernel of D is all constant polynomials, all polynomials of degree zero, plus zero.
(c) D is onto, so the image of $F[x]$ is $F[x]$. Suppose that

$$
g(x)=\sum a_{i} x^{i} \in F[x] .
$$

As the characteristic of F is zero, $i \cdot 1 \neq 0$ and if we put

$$
f(x)=\sum \frac{a_{i}}{i \cdot 1} x^{i} \in F[x]
$$

then

$$
D(f(x))=\sum i \cdot 1 \frac{a_{i}}{i \cdot 1} x^{i}=\sum a_{i} x^{i}=g(x)
$$

§23: 2. We have $q(x)=5 x^{4}+5 x^{2}+6 x$ and $r(x)=x+2$ so that

$$
\left(x^{6}+3 x^{5}+4 x^{2}-3 x+2\right)=\left(5 x^{4}+5 x^{2}+6 x\right)\left(3 x^{2}+2 x-3\right)+(x+2) .
$$

10. To find the linear factors of $x^{3}+2 x^{2}+2 x+1 \in \mathbb{Z}_{7}[x]$, the first thing to do is find the zeroes. One way to proceed is brute computation.

$$
\begin{aligned}
& \phi_{0}\left(x^{3}+2 x^{2}+2 x+1\right)=0^{3}+2 \cdot 0^{2}+2 \cdot 0+1=1 \\
& \phi_{1}\left(x^{3}+2 x^{2}+2 x+1\right)=1^{3}+2 \cdot 1^{2}+2 \cdot 1+1=6 \\
& \phi_{2}\left(x^{3}+2 x^{2}+2 x+1\right)=2^{3}+2 \cdot 2^{2}+2 \cdot 2+1=0 \\
& \phi_{3}\left(x^{3}+2 x^{2}+2 x+1\right)=3^{3}+3 \cdot 3^{2}+2 \cdot 3+1=3 \\
& \phi_{4}\left(x^{3}+2 x^{2}+2 x+1\right)=4^{3}+2 \cdot 4^{2}+2 \cdot 4+1=0 \\
& \phi_{5}\left(x^{3}+2 x^{2}+2 x+1\right)=5^{3}+2 \cdot 5^{2}+2 \cdot 5+1=4 \\
& \phi_{6}\left(x^{3}+2 x^{2}+2 x+1\right)=6^{3}+2 \cdot 6^{2}+2 \cdot 6+1=0 .
\end{aligned}
$$

Thus
$x^{3}+2 x^{2}+2 x+1=(x-2)(x-4)(x-6)=(x+5)(x+3)(x+1) \in \mathbb{Z}_{7}[x]$.
Or we could observe that since 2 is a zero, we must be able to divide $x^{3}+2 x^{2}+2 x+1$ by $x-2=x+5$. If we run the division algorithm we get

$$
x^{3}+2 x^{2}+2 x+1=(x+5)\left(x^{2}+4 x+3\right) .
$$

We now look for zeroes of $x^{2}+4 x+3$. We know that 0 and 1 are not zeroes.

$$
\begin{aligned}
& \phi_{2}\left(x^{2}+4 x+3\right)=2^{2}+4 \cdot 2+3=1 \\
& \phi_{3}\left(x^{2}+4 x+3\right)=3^{2}+4 \cdot 3+3=3 \\
& \phi_{4}\left(x^{2}+4 x+3\right)=4^{2}+4 \cdot 4+3=0 .
\end{aligned}
$$

Thus 4 is a zero of $x^{2}+4 x+3$. It follows that we can divide $x^{2}+4 x+3$ by $x-4=x+3$. If we run the division algorithm we get

$$
x^{2}+4 x+3=(x+3)(x+1) .
$$

Thus

$$
x^{3}+2 x^{2}+2 x+1=(x+5)(x+3)(x+1) \in \mathbb{Z}_{7}[x],
$$

as before.
14. There are many ways to show that $f(x)=x^{2}+8 x-2$ is irreducible over \mathbb{Q}. First of all by Gauss, it suffices to show that it is irreducible over \mathbb{Z}.
If it is not irreducible it factors as

$$
x^{2}+8 x-2=(a x+b)(c x d+d) \in \mathbb{Z}[x] .
$$

As the coefficient of x^{2} is 1 , we have $a c=1$, so that $a=c=1$ or $a=c=-1$. We may assume that $a=c=1$. Thus

$$
x^{2}+8 x-2=(x+b)(x d+d) \in \mathbb{Z}[x] .
$$

The product of b and d is two, $b d=2$. Thus $b= \pm 1$ and $d= \pm 2$, up to switching b and d. The sum of b and d is $8, b+d=8$. On the other hand, the maximum of the sum of ± 1 and ± 2 is $1+2=3$, nowhere near 8. Thus $x^{2}+8 x-2$ is irreducible over \mathbb{Z} and so it is irreducible over \mathbb{Q}.
We could also apply Eisenstein with $p=2$.
The discriminant of $x^{2}+8 x-2$ is $8^{2}-4 \cdot-2=8 \cdot 9=72>0$. Thus $x^{2}+8 x-2$ has two real roots, α_{1} and α_{2}, by the quadratic formula. Thus

$$
x^{2}+8 x-2=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \in \mathbb{R}[x],
$$

is reducible over \mathbb{R}. In particular it is certainly reducible over \mathbb{C}.
21. Yes. Take $p=5$. Then p divides $-25,10$ and 30 but p^{2} does not divide -30 .
25. T: (a), (b), (c), (e), (f), (g), (h), (i),

F: (d), (j) [depending on whether you allow the polynomial to be zero].
28. A polynomial of degree 3 is irreducible if and only if it has no zeroes. So we just want to list the polynomials of degree 3 with no zeroes. The general polynomial of degree three looks like

$$
a x^{3}+b x^{2}+c x+d \in \mathbb{Z}_{2}[x] .
$$

Since this has degree $3, a \neq 0$ and so we may assume that $a=1$, so that we have a polynomial of the form

$$
x^{3}+b x^{2}+c x+d \in \mathbb{Z}_{2}[x] .
$$

$\alpha=0$ is a zero if and only if $d=0$. So we may assume that $d=1$ and we have a polynomial of the form

$$
x^{3}+b x^{2}+c x+1 \in \mathbb{Z}_{2}[x] .
$$

$\alpha=1$ is a zero if and only if $1+b+c+1=0$ so that $b+c=0$. This happens if $b=c=0$ or $b=c=1$. So $\alpha=1$ is not a zero if $b=1, c=0$ or $b=0, c=1$. Thus the irreducible polynomials in $\mathbb{Z}_{2}[x]$ of degree 3 are

$$
x^{3}+x^{2}+1 \quad \text { and } \quad x^{3}+x+1
$$

3. Challenge Problems $\S 23: 37$. (a) Let

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=\sum a_{i} x^{i} \\
& g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}=\sum b_{i} x^{i},
\end{aligned}
$$

be two polynomials in $\mathbb{Z}[x]$.

Then

$$
\begin{aligned}
\bar{\sigma}_{m}(f(x)+g(x)) & =\bar{\sigma}_{m}\left(\sum_{i} a_{i} x^{i}+\sum_{i} b_{i} x^{i}\right) \\
& =\bar{\sigma}_{m}\left(\sum_{i}\left(a_{i}+b_{i}\right) x^{i}\right) \\
& =\sum_{i} \sigma_{m}\left(a_{i}+b_{i}\right) x^{i} \\
& =\sum_{i}\left(\sigma_{m}\left(a_{i}\right)+\sigma_{m}\left(b_{i}\right)\right) x^{i} \\
& =\sum_{i} \sigma_{m}\left(a_{i}\right) x^{i}+\sum_{i} \sigma_{m}\left(b_{i}\right) x^{i} \\
& =\bar{\sigma}_{m}\left(\sum_{i} a_{i} x^{i}\right)+\bar{\sigma}_{m}\left(\sum_{i} b_{i} x^{i}\right) \\
& =\bar{\sigma}_{m}(f(x))+\bar{\sigma}_{m}(g(x)) .
\end{aligned}
$$

Thus $\bar{\sigma}_{m}$ is a group homomorphism.
We now check it is a ring homomorphism.

$$
\begin{aligned}
\bar{\sigma}_{m}(f(x) g(x)) & =\bar{\sigma}_{m}\left(\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{i} b_{i} x^{i}\right)\right) \\
& =\bar{\sigma}_{m}\left(\sum_{i}\left(\sum_{j} a_{j} b_{i-j}\right) x^{i}\right) \\
& =\sum_{i} \sigma_{m}\left(\sum_{j} a_{j} b_{i-j}\right) x^{i} \\
& =\sum_{i}\left(\sum_{j} \sigma_{m}\left(a_{i}\right) \sigma_{m}\left(b_{i-j}\right)\right) x^{i} \\
& =\left(\sum_{i} \sigma_{m}\left(a_{i}\right) x^{i}\right)\left(\sum_{i} \sigma_{m}\left(b_{i}\right) x^{i}\right) \\
& =\bar{\sigma}_{m}\left(\sum_{i} a_{i} x^{i}\right) \bar{\sigma}_{m}\left(\sum_{i} b_{i} x^{i}\right) \\
& =\bar{\sigma}_{m}(f(x)) \bar{\sigma}_{m}(g(x))
\end{aligned}
$$

Therefore $\bar{\sigma}_{m}$ is a ring homomorphism.
(b) Suppose not, suppose that $f(x)$ is reducible. Then we may find $g(x)$ and $h(x)$ polynomials with rational coefficients such that

$$
f(x)=g(x) h(x)
$$

and both have degree less than n. By Gauss, we may assume that $g(x)$ and $h(x)$ have integer coefficients. Since $\bar{\sigma}_{m}$ is a ring homomorphism,
we have

$$
\bar{\sigma}_{m}(f(x))=\bar{\sigma}_{m}(g(x)) \bar{\sigma}_{m}(h(x)) .
$$

The LHS has degree n by assumption. Both $\bar{\sigma}_{m}(g(x))$ and $\bar{\sigma}_{m}(h(x))$ have degree less than n, a contradiction.
Thus $f(x)$ is irreducible over the rationals.
(c) Take $m=5$. Then

$$
\bar{\sigma}_{5}\left(x^{3}+17 x+36\right)=x^{3}+2 x+1 \in \mathbb{Z}_{5}[x] .
$$

We check that the RHS is irreducible. It suffices to check that it has no zeroes. We compute

$$
\begin{aligned}
& \phi_{0}\left(x^{3}+2 x+1\right)=0^{3}+2 \cdot 0+1=1 \\
& \phi_{1}\left(x^{3}+2 x+1\right)=1^{3}+2 \cdot 1+1=4 \\
& \phi_{2}\left(x^{3}+2 x+1\right)=2^{3}+2 \cdot 2+1=3 \\
& \phi_{3}\left(x^{3}+2 x+1\right)=3^{3}+2 \cdot 3+1=4 \\
& \phi_{4}\left(x^{3}+2 x+1\right)=4^{3}+2 \cdot 4+1=3 .
\end{aligned}
$$

Thus $x^{3}+2 x+1 \in \mathbb{Z}_{5}[x]$ is irreducible and so $x^{3}+17 x+36$ is irreducible over the rationals by (b).

