MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. §26: 1. Let

$$
\phi: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}
$$

be a ring homomorphism. Let $(a, b)=\phi(1,0)$ and let $(c, d)=\phi(0,1)$. Note that

$$
(m, n)=m \cdot(1,0)+n \cdot(0,1)
$$

and so

$$
\begin{aligned}
\phi(m, n) & =\phi(m \cdot(1,0)+n \cdot(0,1)) \\
& =m \cdot \phi(1,0)+n \cdot \phi(0,1) \\
& =m \cdot(a, b)+n \cdot(c, d) \\
& =(m a+n c, m b+n d) .
\end{aligned}
$$

It follows that if ϕ is a ring homomorphism, we just need to know where ϕ sends $(1,0)$ and $(0,1)$. Therefore it is enough to determine all possible choices for a, b, c and d.
We have

$$
\begin{aligned}
(a, b) & =\phi(1,0) \\
& =\phi((1,0)(1,0)) \\
& =\phi(1,0) \phi(1,0) \\
& =(a, b)(a, b) \\
& =\left(a^{2}, b^{2}\right) .
\end{aligned}
$$

Thus $a^{2}=a$ and $b^{2}=b$. Hence a and b belong to $\{0,1\}$. By symmetry c and d also belong to $\{0,1\}$. We also have

$$
\begin{aligned}
(0,0) & =\phi(0,0) \\
& =\phi((1,0)(0,1)) \\
& =\phi(1,0) \phi(0,1) \\
& =(a, b)(c, d) \\
& =(a c, b d) .
\end{aligned}
$$

Thus $a c=0$ and $b d=0$. We write down all possible choices of a, b, c and d belonging to $\{0,1\}$ such that $a c=0$ and $b d=0$.
(1) All four of a, b, c and d are zero.
(2) One of a, b, c and d is one and the rest are zero.
(3) Two of a, b, c and d are one and the other two are zero.
(a) $a=b=1$ and $c=d=0$ or $a=b=0$ and $c=d=1$.
(b) $a=1, b=0, c=0, d=1$ or $a=0, b=1, c=1, d=0$.

We now check that in all of these cases we do indeed get a ring homomorphism.
In case (1) ϕ is the zero map, which is a ring homomorphism. In case (2) if $a=1$ we get the map

$$
(m, n) \longrightarrow(m, 0)
$$

which is a ring homomorphism (it is the composition of projection onto the first factor and the inclusion $m \longrightarrow(m, 0))$. The other three cases are ring homomorphisms by symmetry.
In case 3 (a), $a=b=1$ and $c=d=0$, we get the map

$$
(m, n) \longrightarrow(m, m),
$$

which is a ring homomorphism (it is the composition of projection onto the first factor and the inclusion $m \longrightarrow(m, m))$. The other case is a ring homomorphism by symmetry.
In case $3(\mathrm{~b}), a=1, b=0, c=0, d=1$, we get the map

$$
(m, n) \longrightarrow(m, n)
$$

which is the identity. This is always a ring homomorphism.
In case $3(\mathrm{~b}), a=0, b=1, c=1, d=0$, we get the map

$$
(m, n) \longrightarrow(n, m),
$$

which it is easy to check is a ring homomorphism.
4. The elements of $2 \mathbb{Z} / 8 \mathbb{Z}$ are the left cosets,

$$
8 \mathbb{Z}, \quad 2+8 \mathbb{Z}, \quad 4+8 \mathbb{Z}, \quad \text { and } \quad 6+8 \mathbb{Z}
$$

The addition table is

+	$8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$
$8 \mathbb{Z}$	$8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$
$2+8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$	$8 \mathbb{Z}$
$4+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$	$8 \mathbb{Z}$	$2+8 \mathbb{Z}$
$6+8 \mathbb{Z}$	$6+8 \mathbb{Z}$	$8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$

and the multiplication table is

$*$	$8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$
$8 \mathbb{Z}$				
$2+8 \mathbb{Z}$	$8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$8 \mathbb{Z}$	$4+8 \mathbb{Z}$
$4+8 \mathbb{Z}$	$8 \mathbb{Z}$	$8 \mathbb{Z}$	$8 \mathbb{Z}$	$8 \mathbb{Z}$
$6+8 \mathbb{Z}$	$8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$8 \mathbb{Z}$	$4+8 \mathbb{Z}$

This ring is not isomorphic to \mathbb{Z}_{4}. For example, the ring \mathbb{Z}_{4} has unity and $2 \mathbb{Z} / 8 \mathbb{Z}$ does not.
10. T: (a), (c), (e), (g), (h), (i), (j).

F: (b), (d), (f).
12. Let $R=\mathbb{Z}$ and let $I=2 \mathbb{Z}$. The quotient ring is isomorphic to \mathbb{Z}_{2} which is a field.
18. Let $\phi: F \longrightarrow R$ be a ring homomorphism from a field to a ring. Let $I=\operatorname{Ker} \phi$. Then I is an ideal in F. If $I=\{0\}$ then ϕ is one to one.
Otherwise I contains a non-zero element a. As F is a field, a is a unit, and so we may find b such that $a b=1$. But then $1=a b \in I$ as $a \in I$ and I is an ideal. Now suppose that c is any element of F. Then $c=c 1 \in I$ as $1 \in I$ and I is an ideal. In this case $I=F$. But then ϕ sends everything to zero and so it is the zero map.
20. We first check that ϕ is a group homomorphism. If a and $b \in R$ then

$$
\begin{aligned}
\phi(a+b) & =(a+b)^{p} \\
& =a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\ldots\binom{p}{i} a^{i} b^{n-1}+\cdots+b^{p} \\
& =a^{p}+b^{p} \\
& =\phi(a)+\phi(b),
\end{aligned}
$$

where we used the fact that $\binom{p}{i}$ is zero for $0<i<p$, as it is a multiple of p and the characteristic is p. Thus ϕ is a group homomorphism.
On the other hand

$$
\begin{aligned}
\phi(a b) & =(a b)^{p} \\
& =a^{p} b^{p} \\
& =\phi(a) \phi(b),
\end{aligned}
$$

so that ϕ is a ring homomorphism.
2. Challenge Problems $\S 26$:
30. We first check that I is an additive subgroup. $0 \in I$ as $0^{1}=0$. If a and $b \in I$ then $a^{m}=b^{n}=0$ for some m and n. Consider $(a+b)^{m+n-1}$. If we use the binomial theorem to expand this we get terms of the form $a^{i} b^{j}$ where $i+j=m+n-1$. If $i \geq m$ then

$$
a^{i} b^{j}=a^{m} a^{i-m} b^{j}=0
$$

If $i<m$ then $j=m+n-1-i \geq n$ and so

$$
a^{i} b^{j}=a^{i} b^{j-n} b^{n}=0
$$

Thus $(a+b)^{m+n-1}=0$ and so $a+b \in I$. Thus I is closed under addition and so I is an additive subgroup.

If $a \in I$ and $r \in R$ then $a^{n}=0$ for some n. But then

$$
(r a)^{n}=r^{n} a^{n}=r^{n} 0=0,
$$

so that $r a \in I$. It follows that I is an ideal.
31. If $a \in \mathbb{Z}_{12}$ is nilpotent then a^{n} is divisible by 12 for some n. This happens if a is divisible by both 2 and 3 . Thus the nilradical of \mathbb{Z}_{12} is $\{0,6\}$.
\mathbb{Z} is an integral domain, so the nilradical is the zero ideal $\{0\}$.
If $a \in \mathbb{Z}_{32}$ is nilpotent then a^{n} is divisible by 32 for some n. This happens if a is even. The nilradical is the set of even elements of \mathbb{Z}_{32}.

