MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. §26: 1. Let

$$\phi\colon \mathbb{Z}\times\mathbb{Z}\longrightarrow\mathbb{Z}\times\mathbb{Z}$$

be a ring homomorphism. Let $(a, b) = \phi(1, 0)$ and let $(c, d) = \phi(0, 1)$. Note that

$$(m,n) = m \cdot (1,0) + n \cdot (0,1)$$

and so

$$\phi(m,n) = \phi(m \cdot (1,0) + n \cdot (0,1))$$

= $m \cdot \phi(1,0) + n \cdot \phi(0,1)$
= $m \cdot (a,b) + n \cdot (c,d)$
= $(ma + nc, mb + nd).$

It follows that if ϕ is a ring homomorphism, we just need to know where ϕ sends (1,0) and (0,1). Therefore it is enough to determine all possible choices for a, b, c and d. We have

$$\begin{aligned} (a,b) &= \phi(1,0) \\ &= \phi((1,0)(1,0)) \\ &= \phi(1,0)\phi(1,0) \\ &= (a,b)(a,b) \\ &= (a^2,b^2). \end{aligned}$$

Thus $a^2 = a$ and $b^2 = b$. Hence a and b belong to $\{0, 1\}$. By symmetry c and d also belong to $\{0, 1\}$. We also have

$$(0,0) = \phi(0,0) = \phi((1,0)(0,1)) = \phi(1,0)\phi(0,1) = (a,b)(c,d) = (ac,bd).$$

Thus ac = 0 and bd = 0. We write down all possible choices of a, b, c and d belonging to $\{0, 1\}$ such that ac = 0 and bd = 0.

- (1) All four of a, b, c and d are zero.
- (2) One of a, b, c and d is one and the rest are zero.
- (3) Two of a, b, c and d are one and the other two are zero.

(a) a = b = 1 and c = d = 0 or a = b = 0 and c = d = 1.

(b)
$$a = 1, b = 0, c = 0, d = 1$$
 or $a = 0, b = 1, c = 1, d = 0$.

We now check that in all of these cases we do indeed get a ring homomorphism.

In case (1) ϕ is the zero map, which is a ring homomorphism. In case (2) if a = 1 we get the map

$$(m,n) \longrightarrow (m,0),$$

which is a ring homomorphism (it is the composition of projection onto the first factor and the inclusion $m \longrightarrow (m, 0)$). The other three cases are ring homomorphisms by symmetry.

In case 3 (a), a = b = 1 and c = d = 0, we get the map

$$(m,n) \longrightarrow (m,m),$$

which is a ring homomorphism (it is the composition of projection onto the first factor and the inclusion $m \longrightarrow (m, m)$). The other case is a ring homomorphism by symmetry.

In case 3 (b), a = 1, b = 0, c = 0, d = 1, we get the map

$$(m,n) \longrightarrow (m,n),$$

which is the identity. This is always a ring homomorphism. In case 3 (b), a = 0, b = 1, c = 1, d = 0, we get the map

$$(m,n) \longrightarrow (n,m),$$

which it is easy to check is a ring homomorphism. 4. The elements of $2\mathbb{Z}/8\mathbb{Z}$ are the left cosets,

$$8\mathbb{Z}$$
, $2+8\mathbb{Z}$, $4+8\mathbb{Z}$, and $6+8\mathbb{Z}$.

The addition table is

$8\mathbb{Z} 4 + 8\mathbb{Z} 0 + 8\mathbb{Z}$
$8\mathbb{Z}$ $4+8\mathbb{Z}$ $6+8\mathbb{Z}$
$8\mathbb{Z} 6+8\mathbb{Z} 8\mathbb{Z}$
$8\mathbb{Z}$ $8\mathbb{Z}$ $2+8\mathbb{Z}$
$2 - 2 + 8\mathbb{Z} - 4 + 8\mathbb{Z}$

and the multiplication table is

*	$8\mathbb{Z}$	$2+8\mathbb{Z}$	$4 + 8\mathbb{Z}$	$6+8\mathbb{Z}$
$8\mathbb{Z}$	$8\mathbb{Z}$	$8\mathbb{Z}$	$8\mathbb{Z}$	$8\mathbb{Z}$
$2+8\mathbb{Z}$	$8\mathbb{Z}$	$4+8\mathbb{Z}$	$8\mathbb{Z}$	$4+8\mathbb{Z}$
$4 + 8\mathbb{Z}$	$8\mathbb{Z}$	$8\mathbb{Z}$	$8\mathbb{Z}$	$8\mathbb{Z}$
$6+8\mathbb{Z}$	$8\mathbb{Z}$	$4 + 8\mathbb{Z}$	$8\mathbb{Z}$	$4+8\mathbb{Z}$

This ring is not isomorphic to \mathbb{Z}_4 . For example, the ring \mathbb{Z}_4 has unity and $2\mathbb{Z}/8\mathbb{Z}$ does not.

10. T: (a), (c), (e), (g), (h), (i), (j).

F: (b), (d), (f).

12. Let $R = \mathbb{Z}$ and let $I = 2\mathbb{Z}$. The quotient ring is isomorphic to \mathbb{Z}_2 which is a field.

18. Let $\phi: F \longrightarrow R$ be a ring homomorphism from a field to a ring. Let $I = \text{Ker } \phi$. Then I is an ideal in F. If $I = \{0\}$ then ϕ is one to one.

Otherwise I contains a non-zero element a. As F is a field, a is a unit, and so we may find b such that ab = 1. But then $1 = ab \in I$ as $a \in I$ and I is an ideal. Now suppose that c is any element of F. Then $c = c1 \in I$ as $1 \in I$ and I is an ideal. In this case I = F. But then ϕ sends everything to zero and so it is the zero map.

20. We first check that ϕ is a group homomorphism. If a and $b \in R$ then

$$\phi(a+b) = (a+b)^{p}$$

= $a^{p} + {p \choose 1} a^{p-1}b + {p \choose 2} a^{p-2}b^{2} + \dots {p \choose i} a^{i}b^{n-1} + \dots + b^{p}$
= $a^{p} + b^{p}$
= $\phi(a) + \phi(b)$,

where we used the fact that $\binom{p}{i}$ is zero for 0 < i < p, as it is a multiple of p and the characteristic is p. Thus ϕ is a group homomorphism. On the other hand

$$\phi(ab) = (ab)^p$$
$$= a^p b^p$$
$$= \phi(a)\phi(b),$$

so that ϕ is a ring homomorphism.

2. Challenge Problems §26:

30. We first check that I is an additive subgroup. $0 \in I$ as $0^1 = 0$. If a and $b \in I$ then $a^m = b^n = 0$ for some m and n. Consider $(a+b)^{m+n-1}$. If we use the binomial theorem to expand this we get terms of the form $a^i b^j$ where i + j = m + n - 1. If $i \ge m$ then

$$a^i b^j = a^m a^{i-m} b^j = 0.$$

If i < m then $j = m + n - 1 - i \ge n$ and so

$$a^i b^j = a^i b^{j-n} b^n = 0.$$

Thus $(a+b)^{m+n-1} = 0$ and so $a+b \in I$. Thus I is closed under addition and so I is an additive subgroup.

If $a \in I$ and $r \in R$ then $a^n = 0$ for some n. But then

$$(ra)^n = r^n a^n = r^n 0 = 0.$$

so that $ra \in I$. It follows that I is an ideal.

31. If $a \in \mathbb{Z}_{12}$ is nilpotent then a^n is divisible by 12 for some n. This happens if a is divisible by both 2 and 3. Thus the nilradical of \mathbb{Z}_{12} is $\{0, 6\}$.

 \mathbb{Z} is an integral domain, so the nilradical is the zero ideal $\{0\}$.

If $a \in \mathbb{Z}_{32}$ is nilpotent then a^n is divisible by 32 for some n. This happens if a is even. The nilradical is the set of even elements of \mathbb{Z}_{32} .