
MODEL ANSWERS TO THE EIGHTH HOMEWORK

1. §26: 1. Let
φ : Z× Z −→ Z× Z

be a ring homomorphism. Let (a, b) = φ(1, 0) and let (c, d) = φ(0, 1).
Note that

(m,n) = m · (1, 0) + n · (0, 1)

and so

φ(m,n) = φ(m · (1, 0) + n · (0, 1))

= m · φ(1, 0) + n · φ(0, 1)

= m · (a, b) + n · (c, d)

= (ma+ nc,mb+ nd).

It follows that if φ is a ring homomorphism, we just need to know
where φ sends (1, 0) and (0, 1). Therefore it is enough to determine all
possible choices for a, b, c and d.
We have

(a, b) = φ(1, 0)

= φ((1, 0)(1, 0))

= φ(1, 0)φ(1, 0)

= (a, b)(a, b)

= (a2, b2).

Thus a2 = a and b2 = b. Hence a and b belong to {0, 1}.
By symmetry c and d also belong to {0, 1}. We also have

(0, 0) = φ(0, 0)

= φ((1, 0)(0, 1))

= φ(1, 0)φ(0, 1)

= (a, b)(c, d)

= (ac, bd).

Thus ac = 0 and bd = 0. We write down all possible choices of a, b, c
and d belonging to {0, 1} such that ac = 0 and bd = 0.

(1) All four of a, b, c and d are zero.
(2) One of a, b, c and d is one and the rest are zero.
(3) Two of a, b, c and d are one and the other two are zero.
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(a) a = b = 1 and c = d = 0 or a = b = 0 and c = d = 1.
(b) a = 1, b = 0, c = 0, d = 1 or a = 0, b = 1, c = 1, d = 0.

We now check that in all of these cases we do indeed get a ring homo-
morphism.
In case (1) φ is the zero map, which is a ring homomorphism. In case
(2) if a = 1 we get the map

(m,n) −→ (m, 0),

which is a ring homomorphism (it is the composition of projection onto
the first factor and the inclusion m −→ (m, 0)). The other three cases
are ring homomorphisms by symmetry.
In case 3 (a), a = b = 1 and c = d = 0, we get the map

(m,n) −→ (m,m),

which is a ring homomorphism (it is the composition of projection onto
the first factor and the inclusion m −→ (m,m)). The other case is a
ring homomorphism by symmetry.
In case 3 (b), a = 1, b = 0, c = 0, d = 1, we get the map

(m,n) −→ (m,n),

which is the identity. This is always a ring homomorphism.
In case 3 (b), a = 0, b = 1, c = 1, d = 0, we get the map

(m,n) −→ (n,m),

which it is easy to check is a ring homomorphism.
4. The elements of 2Z/8Z are the left cosets,

8Z, 2 + 8Z, 4 + 8Z, and 6 + 8Z.
The addition table is

+ 8Z 2 + 8Z 4 + 8Z 6 + 8Z
8Z 8Z 2 + 8Z 4 + 8Z 6 + 8Z

2 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z 8Z
4 + 8Z 4 + 8Z 6 + 8Z 8Z 2 + 8Z
6 + 8Z 6 + 8Z 8Z 2 + 8Z 4 + 8Z

and the multiplication table is

∗ 8Z 2 + 8Z 4 + 8Z 6 + 8Z
8Z 8Z 8Z 8Z 8Z

2 + 8Z 8Z 4 + 8Z 8Z 4 + 8Z
4 + 8Z 8Z 8Z 8Z 8Z
6 + 8Z 8Z 4 + 8Z 8Z 4 + 8Z

This ring is not isomorphic to Z4. For example, the ring Z4 has unity
and 2Z/8Z does not.
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10. T: (a), (c), (e), (g), (h), (i), (j).
F: (b), (d), (f).
12. Let R = Z and let I = 2Z. The quotient ring is isomorphic to Z2

which is a field.
18. Let φ : F −→ R be a ring homomorphism from a field to a ring.
Let I = Kerφ. Then I is an ideal in F . If I = {0} then φ is one to
one.
Otherwise I contains a non-zero element a. As F is a field, a is a unit,
and so we may find b such that ab = 1. But then 1 = ab ∈ I as a ∈ I
and I is an ideal. Now suppose that c is any element of F . Then
c = c1 ∈ I as 1 ∈ I and I is an ideal. In this case I = F . But then φ
sends everything to zero and so it is the zero map.
20. We first check that φ is a group homomorphism. If a and b ∈ R
then

φ(a+ b) = (a+ b)p

= ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 + . . .

(
p

i

)
aibn−1 + · · ·+ bp

= ap + bp

= φ(a) + φ(b),

where we used the fact that
(
p
i

)
is zero for 0 < i < p, as it is a multiple

of p and the characteristic is p. Thus φ is a group homomorphism.
On the other hand

φ(ab) = (ab)p

= apbp

= φ(a)φ(b),

so that φ is a ring homomorphism.
2. Challenge Problems §26:
30. We first check that I is an additive subgroup. 0 ∈ I as 01 = 0. If a
and b ∈ I then am = bn = 0 for some m and n. Consider (a+ b)m+n−1.
If we use the binomial theorem to expand this we get terms of the form
aibj where i+ j = m+ n− 1. If i ≥ m then

aibj = amai−mbj = 0.

If i < m then j = m+ n− 1− i ≥ n and so

aibj = aibj−nbn = 0.

Thus (a+b)m+n−1 = 0 and so a+b ∈ I. Thus I is closed under addition
and so I is an additive subgroup.
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If a ∈ I and r ∈ R then an = 0 for some n. But then

(ra)n = rnan = rn0 = 0,

so that ra ∈ I. It follows that I is an ideal.
31. If a ∈ Z12 is nilpotent then an is divisible by 12 for some n. This
happens if a is divisible by both 2 and 3. Thus the nilradical of Z12 is
{0, 6}.
Z is an integral domain, so the nilradical is the zero ideal {0}.
If a ∈ Z32 is nilpotent then an is divisible by 32 for some n. This
happens if a is even. The nilradical is the set of even elements of Z32.
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