PRACTICE PROBLEMS FOR THE 2ND MIDTERM

1. Give the definition of:
 (i) a ring.
 (ii) the product of two rings.
 (iii) a ring homomorphism.
 (iv) a commutative ring.
 (v) a ring with unity.
 (vi) a unit.
 (vii) a field.
 (viii) a zero-divisor.
 (ix) the cancellation laws.
 (x) an integral domain.
 (xi) the characteristic of a ring.
 (xii) the Euler phi-function.
 (xiii) field of fractions.

2. Classify the following group according to the fundamental theorem of finitely generated abelian groups
 \[
 \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_4 \langle (3, 0, 0) \rangle.
 \]

3. Give an example of a group \(G \) having no elements of finite order \(> 1 \) but having a quotient group \(G/H \), all of whose elements are of finite order.

4. Determine whether the given operations are defined on the set and whether they give a ring. If we don’t get a ring, explain why. If we do get a ring, state whether the ring is commutative, whether it has unity and whether it is a field.
 (i) \(2\mathbb{Z} \times \mathbb{Z} \) with the usual addition and multiplication.
 (ii) The set of all pure imaginary complex numbers
 \[
 \{ ri \mid r \in \mathbb{R} \}
 \]
 with the usual addition and multiplication.

5. Describe all units in the ring \(\mathbb{Z} \times \mathbb{Q} \times \mathbb{R} \).

6. Show that the set of all units \(U \) in a ring \(R \) is a group under multiplication.

7. Let \(R \) be a commutative ring with \(1 \neq 0 \). Show that \(R \) is an integral domain if and only if \(R \) satisfies the cancellation laws.

8. Show that \(2^{11,213} - 1 \) is not divisible by 11.