HOMEWORK 5, DUE TUESDAY FEBRUARY 9TH

1. Let R be an integral domain. Let a and b be two elements of R. Show that if d and d^{\prime} are both a gcd for the pair a and b, then d and d^{\prime} are associates.
2. Let R be a UFD.
(a) Prove that for every pair of elements a and b of R, we may find an element $m=[a, b]$ that is a least common multiple, that is
(1) $a \mid m$ and $b \mid m$,
(2) and if $a \mid m^{\prime}$ and $b \mid m^{\prime}$ then $m \mid m^{\prime}$.

Show that any two lcm's are associates.
(b) Show that if (a, b) denotes the gcd then $(a, b)[a, b]$ is an associate of $a b$.
Let R be a commutative ring. Our aim is to prove a very strong form of the Chinese Remainder Theorem. First we need some definitions. Let I and J be two ideals. The sum of I and J, denoted $I+J$, is the set consisting of all sums $i+j$, where $i \in I$ and $j \in J$. We say that I and J are coprime if $I+J=R$.
3. (a) Show that $I+J$ is an ideal of R.
(b) Show that I and J are coprime if and only if there is an $i \in I$ and a $j \in J$ such that $i+j=1$.
(c) Show that if I and J are coprime then $I J=I \cap J$.

Suppose that $I_{1}, I_{2}, \ldots, I_{k}$ are ideals of R. We say these ideals are pairwise coprime, if for all $i \neq j, I_{i}$ and I_{j} are coprime.
4. If $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime, show that the product I of the ideals $I_{1}, I_{2}, \ldots, I_{k}$ is equal to the intersection, that is

$$
\prod_{i=1}^{k} I_{i}=\bigcap_{i=1}^{k} I_{i} .
$$

(Hint. Proceed by induction on k).
Let R_{i} denote the quotient R / I_{i}. Define a map,

$$
\phi: R \longrightarrow \oplus_{i=1}^{k} R_{i},
$$

by $\phi(a)=\left(a+I_{1}, a+I_{2}, \ldots, a+I_{k}\right)$
4. (a) Show that ϕ is a ring homomorphism.
(b) See bonus problems.
(c) Show that ϕ is injective if and only if I, the product of the ideals $I_{1}, I_{2}, \ldots, I_{k}$, is equal to the zero ideal.
5. Deduce the Chinese Remainder Theorem, which states that if $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime and the product I is the zero ideal, then R is isomorphic to $\oplus_{i=1}^{k} R_{i}$. Show how to deduce the other versions of the Chinese Remainder Theorem, which are stated as exercises in the book. Bonus Problems 4 (b) Show that ϕ is surjective if and only if the ideals $I_{1}, I_{2}, \ldots, I_{k}$ are pairwise coprime.

