HOMEWORK 9, DUE TUESDAY MARCH 8TH

The first few results refer to the power series ring which is defined as follows. Let R be a commutative ring and let x be an indeterminate. The power series ring in R, denoted $R \llbracket x \rrbracket$, consists of all (possibly infinite) formal sums,

$$
\sum_{n \geq 0} a_{n} x^{n}
$$

where $a_{n} \in R$. Thus if $R=\mathbb{Q}$, then both

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots,
$$

and

$$
1+2!x+3!x^{2}+4!x^{3}+\ldots
$$

are elements of $\mathbb{Q} \llbracket x \rrbracket$, even though the second, considered as a power series in the sense of analysis, does not converge for any $x \neq 0$. Addition and multiplication of elements of $R \llbracket x \rrbracket$ are defined as for polynomials. The degree of a power series is equal to the smallest n, so that the coefficient of a_{n} is non-zero. Even for a polynomial, in what follows the degree always refers to the degree as a power series.

1. (i) Show that $R \llbracket x \rrbracket$ is a ring.
(ii) Show that $f(x) \in R \llbracket x \rrbracket$ is a unit if and only if the degree of $f(x)$ is zero and the constant term is a unit. What is the inverse of $1-x$?
(iii) Show that if R is an integral domain then the degree of a product is the sum of the degrees.
(iv) Show that if R is an integral domain then so is $R \llbracket x \rrbracket$.
(v) If F is a field then prove that $F \llbracket x \rrbracket$ is a Euclidean domain.
(vi) Show that if F is a field then $F \llbracket x \rrbracket$ is a UFD.
2. (i) See bonus problems.
(ii) Prove that if R is Noetherian then so is $R \llbracket x_{1}, x_{2}, \ldots, x_{n} \rrbracket$, where the last term is defined appropriately.
3. Let M be a Noetherian R-module. If $\phi: M \longrightarrow M$ is a surjective R-linear map, prove that ϕ is an automorphism. (Hint, consider the submodules, $\left.\operatorname{Ker}\left(\phi^{n}\right)\right)$.
4. Let M, N and P be R-modules and let F be a free R-module of rank n. Show that there are isomorphisms, which are all natural (except for the last):
(a)

$$
M \underset{R}{\otimes} N \simeq N \underset{R}{\otimes} M .
$$

(b)

$$
M \underset{R}{\otimes}(N \underset{R}{\otimes} P) \simeq(M \underset{R}{\otimes} N) \underset{R}{\otimes} P .
$$

(c)

$$
R \underset{R}{\otimes} M \simeq M
$$

(d)

$$
M \underset{R}{\otimes}(N \oplus P) \simeq(M \underset{R}{\otimes} N) \oplus(M \underset{R}{\otimes} P) .
$$

(e)

$$
F \underset{R}{\otimes} M \simeq M^{n},
$$

the direct sum of copies of M with itself n times.
5 . Let m and n be integers. Identify $\mathbb{Z}_{m} \underset{\mathbb{Z}}{\otimes} \mathbb{Z}_{m}$.
6. Show that if M and N are two finitely generated (respectively Noetherian) R-modules (respectively and R is Noetherian) then so is $M \underset{R}{\otimes} N$.
Bonus Problems 7. Show that if R is Noetherian then so is $R \llbracket x \rrbracket$.

