
11. Modules

Definition 11.1. Let R be a commutative ring. A module over R
is a set M together with a binary operation, denoted +, which makes
M into an abelian group, with 0 as the identity element, together with
a rule of multiplication ·,

R×M −→M

(r,m) −→ r ·m,
such that the following hold,

(1) 1 ·m = m,
(2) (rs) ·m = r · (s ·m),
(3) (r + s) ·m = r ·m+ s ·m,
(4) r · (m+ n) = r ·m+ r · n,

for every r and s ∈ R and m and n ∈M .

We will also say that M is an R-module and often refer to the mul-
tiplication as scalar multiplication. There are three key examples of
modules.

Suppose that F is a field. Then an F -module is precisely the same
as a vector space. Indeed, in this case (11.1) is nothing more than the
definition of a vector space.

Now suppose that R = Z. What are the Z-modules? Clearly given
a Z-module M , we get a group. Just forget the fact that one can
multiply by the integers. On the other hand, in fact multiplication by
an element of Z is nothing more than addition of the corresponding
element of the group with itself the appropriate number of times. That
is, given an abelian group G, there is a unique way to make it into a
Z-module,

Z×G −→ G,

(n, g) −→ n · g = g + g + g + · · ·+ g

where we just add g to itself n times. Note that uniqueness is forced
by (1) and (3) of (11.1), by an obvious induction. It follows then that
the data of a Z-module is precisely the same as the data of an abelian
group.

Let R be a ring. Then R can be considered as a module over itself.
Indeed the rule of multiplication as a module is precisely the rule of
multiplication as a ring. The axioms for a ring, ensure that the axioms
for a module hold.

It turns out to be extremely useful to have one definition of an object
that captures all three notions: vector spaces, abelian groups and rings.
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Here is a very non-trivial example. Let F be a field. What does
an F [x]-module look like? Well obviously any F [x]-module is auto-
matically a vector space over F . So we are given a vector space V ,
with the additional data of how to multiply by x. Multiplication by x
induces a transformation of V . The axioms for a module ensure that
this transformation is in fact linear.

On the other hand, suppose we are given a linear transformation φ
of a vector space V . We can define an F [x]-module as follows. Given
v ∈ V , and f(x) ∈ F [x], define

f(x) · v = f(φ)v,

where we substitute x for φ. Note that φ2, and so on, means just apply
φ twice and that we can add linear transformations. Thus the data
of an F [x]-module is exactly the data of a vector space over F , plus a
linear transformation φ.

Note that the definition of f(φ) hides one subtlety. Suppose that one
looks at polynomials in two variables f(x, y). Then it does not really
make sense to substitute for both x and y, using two linear transfor-
mations φ and ψ. The problem is that φ and ψ won’t always commute,
so that the meaning of xy is unclear (should we replace this by φψ of
ψφ?). Of course the powers of a single linear transformation will auto-
matically commute, so that this problem disappears for a polynomial
of one variable.

Lemma 11.2. Let φ : R −→ S be a ring homomorphism. Let M be an
S-module.

Then M is an R-module in a natural way.

Proof. It suffices to define a scalar multiplication map

R×M −→M

and show that this satisifies the axioms for a module.
Given r ∈ R and m ∈M , set

r ·m = φ(r) ·M.

It is easy to check the axioms for a module. �

For example, every R-module M is automatically a Z-module. There
are two ways to see this. First every R-module is in particular an
abelian group, by definition, and an abelian group is the same as a
Z-module. Second observe that there is a unique ring homomorphism

Z −→ R

and this makes M into an R-module by (11.2).
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Lemma 11.3. Let M be an R-module. Then

(1) r · 0 = 0, for every r ∈ R.
(2) 0 ·m = 0, for every m ∈M .
(3) −1 ·m = −m, for every m ∈M .

Proof. We have

r · 0 = r · (0 + 0)

= r · 0 + r · 0.
Cancelling, we have (1). For (2), observe that

0 ·m = (0 + 0) ·m
= 0 ·m+ 0 ·m.

Cancelling, gives (2). Finally

0 = 0 ·m
= (1 +−1) ·m
= 1 ·m+ (−1) ·m
= m+ (−1) ·m,

so that (−1) ·m is indeed the additive inverse of m. �

Definition 11.4. Let M and N be two R-modules.
An R-module homomorphism is a map

φ : M −→ N

such that

φ(m+ n) = φ(m) + φ(n) and φ(rm) = rφ(n).

We will also say that φ is R-linear.
In other words, φ is a homomorphism of groups that also respects

scalar multiplication. If F is a field, then an F -linear map is the same
as a linear map, in the sense of linear algebra. If R = Z, a Z-module
homomorphism is nothing but a group homomorphism.

Note that we now have a category, the category of all R-modules; the
objects are R-modules, and the morphisms are R-linear maps. Given
any ring R, the associated category captures a lot of the properties of
R.

Lemma 11.5. Let M be an R-module and let r ∈ R.
Then the natural map

M −→M

given by m −→ rm is R-linear.
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Proof. Easy check left as an exercise for the reader. �

Definition 11.6. Let M be an R-module.
A submodule N of M is a subset that is a module with the inherited

addition and scalar multiplication.

Let F be a field. Then a submodule is the same as a subvector space.
Let R = Z. Then a submodule is the same as a subgroup. Consider R
as a module over itself. Then a subset I is a submodule if and only if
I is an ideal in the ring R.

Lemma 11.7. Let M be an R-module and let N be a subset of M .
Then N is a submodule of M if and only if it is closed under addition

and scalar multiplication.

Proof. Easy exercise for the reader. �

Definition-Lemma 11.8. Let φ : M −→ N be an R-module homo-
morphism. The kernel of φ, denoted Kerφ is the inverse image of the
zero element of N .

The kernel is a submodule.

Proof. Easy exercise for the reader. �

Definition-Lemma 11.9. Let M be an R-module and let N be a sub-
module.

Then the quotient group M/N can be made into a quotient module
in an obvious way. Furthermore there is a natural R-module homomor-
phism

u : M −→M/N,

which is universal in the following sense.
Let φ : M −→ P be any R-module homomorphism, whose kernel

contains N . Then there is a unique induced R-module homomorphism
ψ : M −→ P , such that the following diagram commutes,

M
φ- P

M/N.

u

?

ψ

....
....

....
....

..-

Proof. Easy exercise for the reader. �

As always, a standard consequence is:

Theorem 11.10. Let
φ : M −→ N

be a surjective R-linear map, with kernel K.
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Then
N 'M/K.

Definition 11.11. Let M be an R-module and let X be a subset.
The R-module generated by X, denoted 〈X〉, is equal to the

smallest submodule that contains X.
We say that the set X generates M if the submodule generated by

X is the whole of M . We say that M is finitely generated if it is
generated by a finite set. We say that M is cyclic if it is generated by
a single element.

Note that the definition of 〈X〉 makes sense; it is easy to adapt the
standard arguments. Suppose that R is a field, so that an R-module
is a vector space. Then a vector space is finitely generated if and only
if it has finite dimension and it is cyclic if and only if it has dimension
at most one. If R = Z, then these are the standard definitions.

Note that a ring R is automatically finitely generated. In fact it
is cyclic, considered as a module over itself, generated by 1, that is
R = 〈1〉. This is clear, since if r ∈ R, then r = r · 1 ∈ 〈1〉. This is our
first indication that the notion of being finitely generated is not the
right one; it is not strong enough.

Lemma 11.12. Let M be a cyclic R-module.
Then M is isomorphic to a quotient of R.

Proof. Let m ∈M be a generator of M . Define a map

φ : R −→M

by sending r ∈ R to rm. It is easy to check that this map is R-
linear. Since the image of φ contains m = φ(1), and m generates M ,
it follows that φ is surjective. The result follows by the Isomorphism
Theorem. �

Definition 11.13. Let M and N be two R-modules.
The direct sum of M and N , denoted M ⊕ N , is the R-module,

which as a set is the Cartesian product of M and N , with addition and
multiplication defined coordinate by coordinate:

(m1, n1)+(m2, n2) = (m1+m2, n1+n2) and r(m,n) = (rm, rn).

Note that the direct sum is a direct sum in the category of R-
modules. Note also that the direct sum of R with itself is generated by
(1, 0) and (0, 1).

Definition 11.14. Let M be an R-module.
We say that M is free if it is isomorphic to a direct sum of copies

(possibly infinite) of R. We say that generators X of M are free
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generators if there is an identification of M with a direct sum of
copies of R, under which the standard generators of the direct sum
corresponds to X.

Suppose that F is a field. Then a set of free generators for a vector
space V is the same as a basis of V . Since every vector space admits a
basis, it follows that every vector space is free. R is a free module over
itself, generated by 1, or indeed by any unit.

A set of free generators comes with an extremely useful universal
property:

Lemma 11.15. Let M be a free R-module, freely generated by X. Let
N be any R-module and let f : X −→ N be any map.

Then there is unique induced R-module homorphism φ : M −→ N
which makes the following diagram commute

X
f- N.

M
?

φ

....
....

....
....

..-

Proof. Let m ∈ M . By assumption, there are x1, x2, . . . , xk ∈ X and
r1, r2, . . . , rk ∈ R, such that

m = r1x1 + r2x2 + · · ·+ rkxk.

In this case, we are obliged to send m to

r1f(x1) + r2f(x2) + · · ·+ rkf(xk),

if we want φ to be R-linear. It suffices to check that this does indeed
define an R-linear map, which is easy to check. �

If R is a field, this is equivalent to saying that a linear map is de-
termined by its action on basis and that given any choice of where to
send the elements of a basis, there is a unique linear map. One obvious
consequence of (11.15) and (11.10) is that every module is a quotient
of a free module, that is, a direct sum of copies of R. In particular

Lemma 11.16. Let M be a finitely generated R-module. Then M is
a quotient of Rn, the direct sum of R with itself n times.
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