
14. Symmetric and Alternating Products

We want to introduce some variations on the theme of tensor prod-
ucts.

The idea is that one can require a bilinear form to be either sym-
metric or alternating.

Definition 14.1. Let M and N be two R-modules and let

f : M ×M −→ N

be a bilinear map. We say that f is symmetric if

f(m,n) = f(n,m).

We say that f is alternating if

f(m,n) = −f(n,m).

Definition 14.2. Let M be an R-module. The symmetric product
of M with itself, denoted Sym2M , is an R-module, together with a
symmetric bilinear map

u : M ×M −→ Sym2M,

which is universal amongst all symmetric bilinear maps, in the follow-
ing sense: let

f : M ×M −→ N,

be any other symmetric bilinear map. Then there is a unique induced
R-linear map

φ : Sym2M −→ N

which makes the following diagram commute

M ×M f- N.

Sym2M.

u
?

φ

....
....

....
....

...-

For the usual reasons, the symmetric product is unique, up to unique
isomorphism, if it exists at all. Note also that there is an R-linear map

M ⊗
R
M −→ Sym2M

whose existence is guaranteed by the universal property of the tensor
product, once again given that the symmetric product exists at all.
This suggests, that the construction of the symmetric product goes
along the same lines as the tensor product, except that one introduces
more relations.
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Lemma 14.3. Let M be an R-module.
Then the symmetric product exists.

Proof. Let F be the free module with generators every element of M ×
M , and let G′ be the submodule generated by G (that is all the old
relations) union the extra relations

(m,n)− (n,m).

Define the symmetric product to be the quotient F/G′. It is left as
an exercise to the reader to check that this is indeed the symmetric
product. �

Definition 14.4. Let M be an R-module. The wedge product of
M with itself, denoted

∧2M , is an R-module, together with a skew-
symmetric map

u : M ×M −→
2∧
M

which is universal amongst all such skew-symmetric bilinear map in the
following sense, given any skew-symmetric bilinear map

f : M ×M −→ N

there is an R-linear map

φ :
2∧
M −→ N.

Uniqueness follows by the standard arguments; existence parrallels
the construction of the symmetric product, the only difference being
that we throw in the generators

(m,n) + (n,m).

instead of
(m,n)− (n,m).

In both cases, it is customary to employ notation for the image of
(m,n). In the case of the symmetric product, we have

m · n
which is subject to the rule

m · n = n ·m.
In the case of the wedge product,

m ∧ n = −m ∧ n.
Note that if 2 is invertible in F , then

m ∧m = 0.
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Perhaps one of the most interesting uses of the symmetric and alter-
nating product, is in the case of vector spaces. If V is a vector space
over a field, and e1, e2, . . . , en is a basis for V , then

ei · ej
is a basis for Sym2 V , where 1 ≤ i ≤ j ≤ n and

ei ∧ ej
is a basis for

∧2 V , where 1 ≤ i < j ≤ n. In particular ∧2V has
dimension (

n

2

)
.

Definition 14.5. Let

f : M1 ×M2 . . .Mn −→ N

be a map. We say that f is multilinear if it is linear in each variable.
If M1 = M2 = . . .Mn and f is invariant (respectively changes sign)

whenever two coordinates are switched, then we say that f is symmet-
ric (respectively alternating).

There are correspondingly three associated universal objects. The
first is in fact isomorphic to the tensor product of Mi (note that since
the tensor product is an associative operation, in fact it makes sense
to talk about the n-fold product, without specifying an order). The

second and third are denoted SymdM and
∧dM .

Definition 14.6. Let M be an R-module and let φ : M −→ N be an
R-linear map. Let f be the composition of the natural map

φn : M ×M × · · · ×M −→ N ×N × · · · ×N
and

u : N ×N × · · · ×N −→
n∧
N.

Then f is alternating bilinear. By the universal property of
∧nM ,

there is an induced R-linear map,
n∧
φ :

n∧
M −→

n∧
N.

Note one interesting thing about the construction of ∧nφ. Suppose
that we go back to the case of a vector space V . If V has dimension n,
then in fact ∧iV has dimension (

n

i

)
.
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In particular if i = n, then ∧iV is a one dimensional vector space, with
basis

v1 ∧ v2 ∧ · · · ∧ vn,
if v1, v2, . . . , vn is a basis of V . If φ : V −→ V is a linear map then

n∧
φ :

n∧
V −→

n∧
V

is a map between one dimensional vector spaces. Now any such map is
determined by a scalar. Indeed if W is a one-dimensional vector space
and w is any non-zero vector in W , and ψ is any linear map, then

φ(w) = λw,

and it is easy to see that λ is independent of w.

Definition 14.7. Let V be a vector space of dimension n and let φ be
a linear map. Let a ∈ F be the unique scalar such that

∧n φ is simply
multiplication by a. Then a is called the determinant of φ and is
denoted detφ.

Example 14.8. Let V be a two dimensional vector space and let φ be a
linear map. Let us compute the determinant in this case. Pick a basis
v and w for V . Then a basis of

∧2 V is v∧w. Now expand φ in terms
of this basis.

Suppose that
φ(v) = av + bw

and
φ(w) = cv + dw.

In other words suppose that the matrix of φ in the basis v and w is(
a b
c d

)
.

Then

φ(v ∧ w) = (av + bw) ∧ (cv + dw)

= av ∧ (cv + dw) + bw ∧ (cv + dw)

= acv ∧ v + ad(v ∧ w) + bc(w ∧ v) + bd(w ∧ w)

= ac(v ∧ w)− bd(v ∧ w)

= (ac− bd)(v ∧ w)

= det(φ)(v ∧ w).

Note that if φ is the identity then ∧iφ is the identity for all i so that
the detφ = 1.
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Lemma 14.9. Let M , N and P be three R-modules and let φ : M −→
N and ψ : N −→ P be two R-linear maps

Then ∧n(φ ◦ ψ) = ∧n(φ) ◦ ∧n(ψ).

Proof. Easy. �

Proposition 14.10. Let V be a vector space of dimension n and let φ
and ψ be two linear maps.

Then det(ψ ◦ φ) = det(ψ) det(φ).

Proof. Easy consequence of (14.9) and the definition of the determi-
nant. �

Lemma 14.11. Let V be a vector space over a field F , of characteristic
not equal to two.

Then there is a canonical isomorphism

V ⊗ V ' Sym2 V ⊕
2∧
V.

Proof. Let U be the vector subspace of V ⊗V generated by the vectors

v ⊗ w + w ⊗ v.
I claim that U is isomorphic to Sym2 V . Indeed define a map V ×V to
U by sending (v, w) to 1/2(v ⊗ w + w ⊗ v). It is easy to see that this
map is symmetric bilinear. Thus there is an induced R-linear map

Sym2 V −→ U.

It is easy to see that this map is both injective and surjective. Thus it
is an isomorphism.

Similarly let W be the vector subspace generated by elements of the
form

v ⊗ w − w ⊗ v.
It is easy to show that this is isomorphic to

∧2 V (identifying v ∧ w
with 1/2(v ⊗ w − w ⊗ v).

On the other hand, W and U span the whole of V ⊗ V (indeed one
can recover v ⊗ w, and these span) and that the intersection of U and
W is the trivial subspace. �
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