
4. Ring Homomorphisms and Ideals

Definition 4.1. Let φ : R −→ S be a function between two rings. We
say that φ is a ring homomorphism if for every a and b ∈ R,

φ(a+ b) = φ(a) + φ(b)

φ(a · b) = φ(a) · φ(b),

and in addition φ(1) = 1.

Note that this gives us a category, the category of rings. The objects
are rings and the morphisms are ring homomorphisms. Just as in the
case of groups, one can define automorphisms.

Example 4.2. Let φ : C −→ C be the map that sends a complex number
to its complex conjugate. Then φ is an automorphism of C. In fact φ
is its own inverse.

Let φ : R[x] −→ R[x] be the map that sends f(x) to f(x + 1). Then
φ is an automorphism. Indeed the inverse map sends f(x) to f(x− 1).

By analogy with groups, we have

Definition 4.3. Let φ : R −→ S be a ring homomorphism.
The kernel of φ, denoted Kerφ, is the inverse image of zero.

As in the case of groups, a very natural question arises. What can
we say about the kernel of a ring homomorphism? Since a ring homo-
morphism is automatically a group homomorphism, it follows that the
kernel is a normal subgroup. However since a ring is an abelian group
under addition, in fact all subgroups are automatically normal.

Definition-Lemma 4.4. Let R be a ring and let I be a subset of R.
We say that I is an ideal of R and write I / R if I is an additive
subgroup of R and for every a ∈ I and r ∈ R, we have

ra ∈ I and ar ∈ I.
Let φ : R −→ S be a ring homorphism and let I be the kernel of φ.
Then I is an ideal of R.

Proof. We have already seen that I is an additive subgroup of R.
Suppose that a ∈ I and r ∈ R. Then

φ(ra) = φ(r)φ(a)

= φ(r)0

= 0.

Thus ra is in the kernel of φ. Similarly for ar. �
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As before, given an additive subgroup H of R, we let R/H denote
the group of left cosets of H in R.

Proposition 4.5. Let R be a ring and let I be an ideal of R, such that
I 6= R.

Then R/I is a ring. Furthermore there is a natural ring homomor-
phism

u : R −→ R/I

which sends a to a+ I.

Proof. As I is an ideal, and addition in R is commutative, it follows
that R/I is a group, with the natural definition of addition inherited
from R. Further we have seen that u is a group homomorphism. It
remains to define a multiplication in R/I.

Given two left cosets a+I and b+I in R/I, we define multiplication
in the obvious way,

(a+ I)(b+ I) = ab+ I.

In fact this is forced by requiring that u be a ring homorphism.
As before the problem is to check that this is well-defined. Suppose

that a′ + I = a+ I and b′ + I = b+ I. Then we may find i and j in I
such that a′ = a+ i and b′ = b+ j. We have

a′b′ = (a+ i)(b+ j)

= ab+ ia+ bj + ij.

As I is an ideal, ia + bj + ij ∈ I. It follows that a′b′ + I = ab + I
and multiplication is well-defined. The rest is easy to check. �

As before the quotient of a ring by an ideal is a categorical quotient.

Theorem 4.6. Let R be a ring and I an ideal not equal to all of R.
Let u : R −→ R/I be the natural map. Then u is universal amongst all
ring homomorphisms whose kernel contains I.
That is, suppose φ : R −→ S is any ring homomorphism, whose

kernel contains I. Then there is a unique ring homomomorphism
ψ : R/I −→ S, which makes the following diagram commute,

R
φ - S

R/I.

u

?....
....
....
....
.-
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Proof. Since φ is a group homomomorphism the existence and unique-
ness of the induced map ψ is clear; this follows by invoking the univer-
sal property of R/I as a categorical group quotient. From there it is
straightforward to check that ψ is a ring homomomorphism. �

Theorem 4.7 (Isomorphism Theorem). Let φ : R −→ S be a homo-
morphism of rings. Suppose that φ is onto and let I be the kernel of
φ.
Then S is isomorphic to R/I.

Example 4.8. Let R = Z. Fix a non-zero integer n and let I consist
of all multiples of n. It is easy to see that I is an ideal of Z. The
quotient, Z/I is Zn the ring of integers modulo n.

Definition-Lemma 4.9. Let R be a commutative ring and let a ∈ R
be an element of R.
The set

I = 〈a〉 = { ra | r ∈ R },
is an ideal and any ideal of this form is called principal.

Proof. We first show that I is an additive subgroup.
Suppose that x and y are in I. Then x = ra and y = sa, where r

and s are two elements of R. In this case

x+ y = ra+ sa

= (r + s)a.

Thus I is closed under addition. Further −x = −ra = (−r)a, so that
I is closed under inverses. It follows that I is an additive subgroup.

Now suppose that x ∈ I and that s ∈ R. Then

sx = s(ra)

= (sr)a ∈ I.

It follows that I is an ideal. �

Definition-Lemma 4.10. Let R be a ring. We say that u ∈ R is a
unit, if u has a multiplicative inverse.

Let I be an ideal of a ring R. If I contains a unit, then I = R.

Proof. Suppose that u ∈ I is a unit of R. Then vu = 1, for some v ∈ R.
It follows that

1 = vu ∈ I.
Pick a ∈ R. Then

a = a · 1 ∈ I. �
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Proposition 4.11. Let R be a division ring. Then the only ideals of
R are the zero ideal and the whole of R. In particular if φ : R −→ S is
any ring homomorphism then φ is injective.

Proof. Let I be an ideal, not equal to {0}. Pick u ∈ I, u 6= 0. As R is
a division ring, it follows that u is a unit. But then I = R.

Now let φ : R −→ S be a ring homomorphism and let I be the
kernel. Then I cannot be the whole of R, so that I = {0}. But then φ
is injective. �

Example 4.12. Let X be a set and let R be a ring. Let F denote the
set of functions from X to R. We have already seen that F forms a
ring, under pointwise addition and multiplication.

Let Y be a subset of X and let I be the set of those functions from
X to R whose restriction to Y is zero.

Then I is an ideal of F . Indeed I is clearly non-empty as the zero
function is an element of I. Given two functions f and g in F , whose
restriction to Y is zero, then clearly the restriction of f + g to Y is
zero. Finally, suppose that f ∈ I, so that f is zero on Y and suppose
that g is any function from X to R. Then gf is zero on Y . Thus I is
an ideal.

Now consider F/I. I claim that this is isomorphic to the space of
functions G from Y to R. Indeed there is a natural map from F to G
which sends a function to its restriction to Y ,

f −→ f |Y
It is clear that the kernel is I. Thus the result follows by the Isomor-

phism Theorem. As a special case, one can take X = [0, 1] and R = R.
Let Y = {1/2}. Then the space of maps from Y to R is just a copy of
R.

Example 4.13. Let R be the ring of Gaussian integers, that is, those
complex numbers of the form a+ bi, where a and b are integers.
Let I be the subset of R consisting of those numbers such 2|a and

2|b. I claim that I is an ideal of R. In fact suppose that a+ bi ∈ I and
c+ di ∈ I. Then

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

As a and c are even, then so is a+ c and similarly as b and d are even,
then so is b+ d.
Thus I is an additive subgroup. On the other hand, if a+ bi ∈ I and

c+ di ∈ R then

(c+ di)(a+ bi) = (ac− bd) + (bc+ ad)i.
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By assumption a and b are even. It is easy to see that ac − bd and
bc+ ad are even, so that the product is in I and so I is an ideal.
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