4. Ring Homomorphisms and Ideals

Definition 4.1. Let $\phi: R \longrightarrow S$ be a function between two rings. We say that ϕ is a **ring homomorphism** if for every a and $b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b)$$

$$\phi(a \cdot b) = \phi(a) \cdot \phi(b),$$

and in addition $\phi(1) = 1$.

Note that this gives us a category, the category of rings. The objects are rings and the morphisms are ring homomorphisms. Just as in the case of groups, one can define automorphisms.

Example 4.2. Let ϕ : $\mathbb{C} \longrightarrow \mathbb{C}$ be the map that sends a complex number to its complex conjugate. Then ϕ is an automorphism of \mathbb{C} . In fact ϕ is its own inverse.

Let $\phi: R[x] \longrightarrow R[x]$ be the map that sends f(x) to f(x+1). Then ϕ is an automorphism. Indeed the inverse map sends f(x) to f(x-1).

By analogy with groups, we have

Definition 4.3. Let $\phi: R \longrightarrow S$ be a ring homomorphism. The **kernel** of ϕ , denoted Ker ϕ , is the inverse image of zero.

As in the case of groups, a very natural question arises. What can we say about the kernel of a ring homomorphism? Since a ring homomorphism is automatically a group homomorphism, it follows that the kernel is a normal subgroup. However since a ring is an abelian group under addition, in fact all subgroups are automatically normal.

Definition-Lemma 4.4. Let R be a ring and let I be a subset of R. We say that I is an **ideal** of R and write $I \triangleleft R$ if I is an additive subgroup of R and for every $a \in I$ and $r \in R$, we have

$$ra \in I$$
 and $ar \in I$.

Let $\phi: R \longrightarrow S$ be a ring homorphism and let I be the kernel of ϕ . Then I is an ideal of R.

Proof. We have already seen that I is an additive subgroup of R. Suppose that $a \in I$ and $r \in R$. Then

$$\phi(ra) = \phi(r)\phi(a)$$
$$= \phi(r)0$$
$$= 0$$

Thus ra is in the kernel of ϕ . Similarly for ar.

As before, given an additive subgroup H of R, we let R/H denote the group of left cosets of H in R.

Proposition 4.5. Let R be a ring and let I be an ideal of R, such that $I \neq R$.

Then R/I is a ring. Furthermore there is a natural ring homomorphism

$$u: R \longrightarrow R/I$$

which sends a to a + I.

Proof. As I is an ideal, and addition in R is commutative, it follows that R/I is a group, with the natural definition of addition inherited from R. Further we have seen that u is a group homomorphism. It remains to define a multiplication in R/I.

Given two left cosets a + I and b + I in R/I, we define multiplication in the obvious way,

$$(a+I)(b+I) = ab+I.$$

In fact this is forced by requiring that u be a ring homorphism.

As before the problem is to check that this is well-defined. Suppose that a' + I = a + I and b' + I = b + I. Then we may find *i* and *j* in *I* such that a' = a + i and b' = b + j. We have

$$a'b' = (a+i)(b+j)$$

= $ab + ia + bj + ij$.

As I is an ideal, $ia + bj + ij \in I$. It follows that a'b' + I = ab + I and multiplication is well-defined. The rest is easy to check. \Box

As before the quotient of a ring by an ideal is a categorical quotient.

Theorem 4.6. Let R be a ring and I an ideal not equal to all of R. Let $u: R \longrightarrow R/I$ be the natural map. Then u is universal amongst all ring homomorphisms whose kernel contains I.

That is, suppose $\phi: R \longrightarrow S$ is any ring homomorphism, whose kernel contains I. Then there is a unique ring homomorphism $\psi: R/I \longrightarrow S$, which makes the following diagram commute,

Proof. Since ϕ is a group homomorphism the existence and uniqueness of the induced map ψ is clear; this follows by invoking the universal property of R/I as a categorical group quotient. From there it is straightforward to check that ψ is a ring homomorphism.

Theorem 4.7 (Isomorphism Theorem). Let $\phi: R \longrightarrow S$ be a homomorphism of rings. Suppose that ϕ is onto and let I be the kernel of ϕ .

Then S is isomorphic to R/I.

Example 4.8. Let $R = \mathbb{Z}$. Fix a non-zero integer n and let I consist of all multiples of n. It is easy to see that I is an ideal of \mathbb{Z} . The quotient, \mathbb{Z}/I is \mathbb{Z}_n the ring of integers modulo n.

Definition-Lemma 4.9. Let R be a commutative ring and let $a \in R$ be an element of R.

The set

$$I = \langle a \rangle = \{ ra \, | \, r \in R \},\$$

is an ideal and any ideal of this form is called **principal**.

Proof. We first show that I is an additive subgroup.

Suppose that x and y are in I. Then x = ra and y = sa, where r and s are two elements of R. In this case

$$\begin{aligned} x + y &= ra + sa \\ &= (r + s)a. \end{aligned}$$

Thus I is closed under addition. Further -x = -ra = (-r)a, so that I is closed under inverses. It follows that I is an additive subgroup.

Now suppose that $x \in I$ and that $s \in R$. Then

$$sx = s(ra)$$
$$= (sr)a \in I$$

It follows that I is an ideal.

Definition-Lemma 4.10. Let R be a ring. We say that $u \in R$ is a **unit**, if u has a multiplicative inverse.

Let I be an ideal of a ring R. If I contains a unit, then I = R.

Proof. Suppose that $u \in I$ is a unit of R. Then vu = 1, for some $v \in R$. It follows that

$$1 = vu \in I.$$

Pick $a \in R$. Then

$$a = a \cdot 1 \in I.$$

Proposition 4.11. Let R be a division ring. Then the only ideals of R are the zero ideal and the whole of R. In particular if $\phi: R \longrightarrow S$ is any ring homomorphism then ϕ is injective.

Proof. Let I be an ideal, not equal to $\{0\}$. Pick $u \in I$, $u \neq 0$. As R is a division ring, it follows that u is a unit. But then I = R.

Now let $\phi: R \longrightarrow S$ be a ring homomorphism and let I be the kernel. Then I cannot be the whole of R, so that $I = \{0\}$. But then ϕ is injective.

Example 4.12. Let X be a set and let R be a ring. Let F denote the set of functions from X to R. We have already seen that F forms a ring, under pointwise addition and multiplication.

Let Y be a subset of X and let I be the set of those functions from X to R whose restriction to Y is zero.

Then I is an ideal of F. Indeed I is clearly non-empty as the zero function is an element of I. Given two functions f and g in F, whose restriction to Y is zero, then clearly the restriction of f + g to Y is zero. Finally, suppose that $f \in I$, so that f is zero on Y and suppose that g is any function from X to R. Then gf is zero on Y. Thus I is an ideal.

Now consider F/I. I claim that this is isomorphic to the space of functions G from Y to R. Indeed there is a natural map from F to G which sends a function to its restriction to Y,

 $f \longrightarrow f|_Y$

It is clear that the kernel is I. Thus the result follows by the Isomorphism Theorem. As a special case, one can take X = [0, 1] and $R = \mathbb{R}$. Let $Y = \{1/2\}$. Then the space of maps from Y to \mathbb{R} is just a copy of \mathbb{R} .

Example 4.13. Let R be the ring of Gaussian integers, that is, those complex numbers of the form a + bi, where a and b are integers.

Let I be the subset of R consisting of those numbers such 2|a and 2|b. I claim that I is an ideal of R. In fact suppose that $a + bi \in I$ and $c + di \in I$. Then

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$

As a and c are even, then so is a + c and similarly as b and d are even, then so is b + d.

Thus I is an additive subgroup. On the other hand, if $a + bi \in I$ and $c + di \in R$ then

$$(c+di)(a+bi) = (ac-bd) + (bc+ad)i.$$

By assumption a and b are even. It is easy to see that ac - bd and bc + ad are even, so that the product is in I and so I is an ideal.