SECOND MIDTERM
MATH 100B, UCSD, WINTER 16

You have 50 minutes.

There are 6 problems, and the total number of points is 85. Show all your work. *Please make your work as clear and easy to follow as possible.*

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

Name: ________________________________

Signature: __________________________
1. (15pts) Give the definition of a prime element of a ring. A non-zero element p of an integral domain R is a prime if $\langle p \rangle$ is a prime ideal, not equal to the whole of R.

(ii) Give the definition of a unique factorisation domain. An integral domain R is a UFD if every non-zero element, not a unit, is a product of primes and this factorisation is unique up to associates and re-ordering.

(iii) Give the definition of the gcd of a pair of elements of an integral domain. The gcd of two elements a and b is an element $d \in R$ such that $d|a$, $d|b$ and if $d'|a$ and $d'|b$ then $d'|d$.

\[\]
2. (15pts) (i) Let \(p \) and \(q \) be two primes in an integral domain \(R \). Show that if \(p \) divides \(q \) then \(p \) and \(q \) are associates. By assumption we may write \(q = ap \) for some \(a \in R \). As \(q \) is a prime, either \(q \) divides \(a \) or it divides \(p \). If it divides \(a \) then \(a = bq \) for some \(b \in R \). Therefore \(q = ap = bqp \) and so, cancelling, we must have \(1 = bp \). But then \(p \) is a unit, a contradiction. Otherwise \(q \) divides \(p \) and so \(p \) and \(q \) are associates.

(ii) Suppose that \(p_1p_2 \ldots p_k = q_1q_2 \ldots q_l \), where \(p_1, p_2, \ldots, p_k \) and \(q_1, q_2, \ldots, q_l \) are primes. Show that \(k = l \) and that if we re-order \(q_1, q_2, \ldots, q_l \) then \(p_i \) and \(q_i \) are associates, for \(1 \leq i \leq k \).

Since \(p_1 \) divides \(p_1p_2 \ldots p_k \) it must divide \(q_1q_2 \ldots q_l \). Thus \(p_1 \) must divide one of the factors. Re-ordering we may assume that \(p_1 \) divides \(q_1 \). Thus \(p_1 \) and \(q_1 \) are associates. Dividing both sides by \(p_1 \) we are done by induction on \(k \).
3. (10pts) Show that the set of all ideals satisfies the ascending chain condition in a principal ideal domain.

Let

$$I_1 \subset I_2 \subset I_3 \subset \cdots \subset I_n \subset \cdots,$$

be an ascending sequence of ideals. Let I be the union. We check that I is an ideal.

If a and $b \in I$ then we may find m and n such that $a \in I_m$ and $b \in I_n$. Then a and $b \in I_k$, where $k = \max(m, n)$. It follows that $a + b \in I_k$ so that $a + b \in I$. Now suppose that $r \in R$. Then $ra \in I_m$ so that $ra \in I$. Thus I is an ideal.

As R is a PID we may find $a \in R$ such that $I = \langle a \rangle$. As $a \in I$ it follows that $a \in I_m$, some m. But then

$$I = \langle a \rangle \subset I_n \subset I \quad \text{for all} \quad n \geq m.$$

Thus $I_n = I_m$ for all $n \neq m$.
4. (15pts) Let R be a principal ideal domain and let a and b be two non-zero elements of R. Show that the gcd d of a and b exists and prove that there are elements r and s of R such that
\[d = ra + sb. \]

Let $I = \langle a, b \rangle$. As R is a PID, $I = \langle d \rangle$, for some $d \in R$. As $d \in I = \langle a, b \rangle$, there are r and $s \in R$, such that $d = ra + sb$. It remains to prove that d is the gcd.

As $a \in I = \langle d \rangle$, d divides a. Similarly d divides b. Thus d is a common divisor. Now suppose that d' is also a common divisor of a and b. Then $a, b \in \langle d' \rangle$. Thus $d \in I = \langle a, b \rangle \subset \langle d' \rangle$. Thus $d \in \langle d' \rangle$ and d' divides d. Thus d is a greatest common divisor.
5. (20pts) (i) Carefully state Gauss’ Lemma. Let R be an integral domain and let F be its field of fractions. Suppose that $f(x) \in R[x]$ and the content of $f(x)$ is one. Then f is irreducible over R if and only if it is irreducible over F.

(ii) Prove that the polynomial

$$f(x) = x^3 + 3x + 2$$

is an irreducible element of $\mathbb{Q}[x]$.

Suppose not. Then f is reducible over \mathbb{Z}. As f is a cubic and the content is one, it must have a linear factor. Suppose that

$$x^3 + 3x + 2 = (x + a)(x^2 + bx + c),$$

where a, b and c are integers. Then $ac = 2$, so that $a = \pm 1, \pm 2$. But then $\pm 1, \pm 2$ would be a root of f, which it is easy to check is not the case.
6. (10pts) **State Eisenstein’s criteria.** Prove that the polynomial $f(x)$

$$6x^{13} - 21x^{12} + 35x^{11} + 42x^{10} - 56x^9 + 14x^8 + 21x^7 - 7x^6 - 42x^5 + 14x^4 + 21x^3 - 7x^2 + 28x + 7,$$

is an irreducible element of $\mathbb{Q}[x]$.

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial. Suppose that there is a prime p which does not divide the leading coefficient of f, whilst it does divide the other coefficients, and such that p^2 does not divide the constant coefficient. Then f is irreducible over \mathbb{Q}.

Apply Eisenstein with $p = 7$.

Bonus Challenge Problems

7. (10pts) Let p be a prime. Prove that

$$f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1,$$

is irreducible over \mathbb{Q}.

See (10.17).
8. (10pts) Prove that if I_1, I_2, \ldots, I_k are pairwise coprime ideals in a commutative ring R and the product is the zero ideal, then R is isomorphic to $\bigoplus_{i=1}^{k} R_i$, where $R_i = R/I_i$.

See Homework set 5.